GIS and Spatial Analysis in the Utilization of Residual Biomass for Biofuel Production

The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect them. The methodology of Geograph...

Full description

Saved in:
Bibliographic Details
Main Author: Sotiris Lycourghiotis
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:J
Subjects:
Online Access:https://www.mdpi.com/2571-8800/8/2/17
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The main goal of this study is to investigate the possibility of using residual materials (biomass derived from used cooking oils and lignocellulosic biomass from plant waste) on a large scale for producing renewable fuels and, in particular, the best way to collect them. The methodology of Geographic Information Systems (GIS) as well as spatial analysis (SA) techniques were used to investigate the Greek case for this. The data recorded in the geographic database were quantities of waste cooking and household oils as well as quantities of lignocellulosic biomass. The most common global and local indices of spatial autocorrelation were used. Concerning the biomass derived from used cooking oils, it was found that their quantities were important (163.17 million L/year), and these can be used to produce green diesel in the context of the circular economy. Although the dispersion of the used cooking oils was wide, there is no doubt that their concentration in large cities and tourist areas is higher. This finding suggests a collection process that could be carried out mainly in these areas through the development of small autonomous collection units in each neighborhood and central processing plants in small regional units. The investigation of the geographical–spatial distribution of residual lignocellulosic biomass showed the geographical fragmentation and heterogeneity of the distributions. The quantities recorded were significant (4.5 million tons/year) but widely dispersed, such that the cost of collecting and transporting the biomass to central processing plants could be prohibitive. The “geography” of the problem itself suggests solutions of small mobile collection units in every part of the country. The lignocellulosic biomass would be collected and converted in situ into bio-oil by rapid pyrolysis carried out in a tanker vehicle. This would transport the produced bio-oil to the nearest oil refineries for the conversion of bio-oil into biofuels through deoxygenation processes.
ISSN:2571-8800