Comparative Validation of the fBrake Method with the Conventional Brake Efficiency Test Under UNE 26110 Using Roller Brake Tester Data
In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake met...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/14/4522 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In periodic technical inspections (PTIs), evaluating the braking efficiency of light passenger vehicles at their Maximum Authorized Mass (MAM) presents a practical challenge, as bringing laden vehicles to inspection is often unfeasible due to logistical and infrastructure limitations. The fBrake method is proposed to overcome this issue by estimating braking efficiency at MAM based on measurements taken from vehicles in more accessible loading conditions. In this study, the fBrake method is validated by demonstrating the equivalence of its efficiency estimates extrapolated from two distinct configurations: an unladen state near the curb weight and a partially laden condition closer to MAM. Following the UNE 26110 standard (Road vehicles. Criteria for the assessment of the equivalence of braking efficiency test methods in relation to the methods defined in ISO 21069), roller brake tester measurements were used to obtain force data under both conditions. The analysis showed that the extrapolated efficiencies agree within combined uncertainty limits, with normalized errors below 1 in all segments tested. Confidence intervals were reduced by up to 74% after electronics update. These results confirm the reliability of the fBrake method for M1 and N1 vehicles and support its adoption as an equivalent procedure in compliance with UNE 26110, particularly when fully laden testing is impractical. |
---|---|
ISSN: | 1424-8220 |