Preliminary Study on Near-Surface Air Temperature Lapse Rate Estimation and Its Spatiotemporal Distribution Characteristics in Beijing–Tianjin–Hebei Mountainous Region
The near-surface air temperature lapse rate (SATLR) is a crucial parameter in climate, hydrology, and ecology research conducted in mountainous regions. However, existing research has difficulty characterizing its dynamic changes on an hourly scale. Obtaining data with high spatiotemporal resolution...
Sábháilte in:
| Príomhchruthaitheoirí: | , , , , |
|---|---|
| Formáid: | Alt |
| Teanga: | Béarla |
| Foilsithe / Cruthaithe: |
MDPI AG
2025-06-01
|
| Sraith: | Remote Sensing |
| Ábhair: | |
| Rochtain ar líne: | https://www.mdpi.com/2072-4292/17/13/2205 |
| Clibeanna: |
Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
|
| Achoimre: | The near-surface air temperature lapse rate (SATLR) is a crucial parameter in climate, hydrology, and ecology research conducted in mountainous regions. However, existing research has difficulty characterizing its dynamic changes on an hourly scale. Obtaining data with high spatiotemporal resolution in complex terrains using existing methods poses challenges. This study introduces a hierarchical method for estimating SATLR at high spatiotemporal resolutions based on Fengyun-4A (FY-4A) Advanced Geostationary Radiation Imager (AGRI) land surface temperature (LST) data and machine learning techniques. Based on reconstructed FY-4A AGRI LST data, this study downscales the 4 km resolution data to a 1 km resolution using machine learning. It then estimates the spatial distribution of near-surface air temperature (SAT) and normalized near-surface air temperature (nSAT) by integrating station observations. Subsequently, high spatiotemporal resolution SATLRs are estimated, and their spatial and temporal distribution characteristics in the Beijing–Tianjin–Hebei mountainous region are analyzed. The results indicate that the SATLR exhibits a predominant distribution of 2~6 °C/km annually across the study area. However, in specific regions such as Taihang Mountains in the southwest, Damajun Mountain in the northwest, and certain areas of central Beijing City, the SATLR exceeds 6 °C/km in depth. Conversely, in Chengde City in the northeast and Huapiling in Damajun Mountain in the northwest, the SATLR is shallower than 2 °C/km. Seasonally, the average SATLR displays significant variation, with 3~5 °C/km being prevalent in spring, summer, and autumn, and 2~4 °C/km in winter. Moreover, the diurnal SATLR patterns from the second to fifth altitude grades exhibit consistency throughout the year and across seasons, albeit with varying overall values at different altitudes. Notably, the SATLR of the first altitude grade demonstrates stability within a day at lower elevations. |
|---|---|
| ISSN: | 2072-4292 |