HSF-YOLO: A Multi-Scale and Gradient-Aware Network for Small Object Detection in Remote Sensing Images

Small object detection (SOD) in remote sensing images (RSIs) is a challenging task due to scale variation, severe occlusion, and complex backgrounds, often leading to high miss and false detection rates. To address these issues, this paper proposes a novel detection framework named HSF-YOLO, which i...

Full description

Saved in:
Bibliographic Details
Main Authors: Fujun Wang, Xing Wang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4369
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small object detection (SOD) in remote sensing images (RSIs) is a challenging task due to scale variation, severe occlusion, and complex backgrounds, often leading to high miss and false detection rates. To address these issues, this paper proposes a novel detection framework named HSF-YOLO, which is designed to jointly enhance feature encoding, attention interaction, and localization precision within the YOLOv8 backbone. Specifically, we introduce three tailored modules: Hybrid Atrous Enhanced Convolution (HAEC), a Spatial–Interactive–Shuffle attention module (C2f_SIS), and a Focal Gradient Refinement Loss (FGR-Loss). The HAEC module captures multi-scale semantic and fine-grained local information through parallel atrous and standard convolutions, thereby enhancing small object representation across scales. The C2f_SIS module fuses spatial and improved channel attention with a channel shuffle strategy to enhance feature interaction and suppress background noise. The FGR-Loss incorporates gradient-aware localization, focal weighting, and separation-aware constraints to improve regression accuracy and training robustness. Extensive experiments were conducted on three public remote sensing datasets. Compared with the baseline YOLOv8, HSF-YOLO improved mAP@0.5 and mAP@0.5:0.95 by 5.7% and 4.0% on the VisDrone2019 dataset, by 2.3% and 2.5% on the DIOR dataset, and by 2.3% and 2.1% on the NWPU VHR-10 dataset, respectively. These results confirm that HSF-YOLO is a unified and effective solution for small object detection in complex RSI scenarios, offering a good balance between accuracy and efficiency.
ISSN:1424-8220