Inverse Design of Metamaterial Absorbers for Far-Infrared CMOS Detectors
Far-infrared(FIR) technology, spanning the infrared (IR) to terahertz (THz) range, has been limited by the lack of high-sensitivity detectors. Here, a complementary metal-oxide–semiconductor (CMOS) microbolometer with Ti/Si3N4/SiO2/Al metamaterial absorbers (MAs) is designed for the detec...
Zapisane w:
| Główni autorzy: | , , , , , , |
|---|---|
| Format: | Artykuł |
| Język: | angielski |
| Wydane: |
IEEE
2025-01-01
|
| Seria: | IEEE Access |
| Hasła przedmiotowe: | |
| Dostęp online: | https://ieeexplore.ieee.org/document/11027144/ |
| Etykiety: |
Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!
|
| Streszczenie: | Far-infrared(FIR) technology, spanning the infrared (IR) to terahertz (THz) range, has been limited by the lack of high-sensitivity detectors. Here, a complementary metal-oxide–semiconductor (CMOS) microbolometer with Ti/Si3N4/SiO2/Al metamaterial absorbers (MAs) is designed for the detection range of 10-<inline-formula> <tex-math notation="LaTeX">$50~\mu $ </tex-math></inline-formula>m. The inverse design of the MAs is applied using binary coding and a staged genetic algorithm (SGA) to enhance efficiency and flexibility for ultra-broadband absorptivity. The optimal MA structure achieves an average absorptivity of 82% across the 10-<inline-formula> <tex-math notation="LaTeX">$50~\mu $ </tex-math></inline-formula>m range and shows excellent tolerance to polarization and incidence angle variations. Thermal simulations reveal that microbolometer with MAs achieves a 162.1% increase in maximum temperature rise. This research provides a performance-optimized and highly integrable solution for extending the detection range of CMOS-based FIR detectors, addressing key challenges in ultra-wideband photodetection across IR to THz wavelengths. |
|---|---|
| ISSN: | 2169-3536 |