Let $G$ be a simple algebraic group of adjoint type over the field of complex numbers, different from $\operatorname{PSL}(2,\mathbb{C})$. Let $\bar{G}$ be the wonderful compactification of $G$ constructed by C. De Concini and C. Procesi. Let $\bar{B}$ be the scheme theoretic closure of a Borel subgr...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2025-06-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.742/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $G$ be a simple algebraic group of adjoint type over the field of complex numbers, different from $\operatorname{PSL}(2,\mathbb{C})$. Let $\bar{G}$ be the wonderful compactification of $G$ constructed by C. De Concini and C. Procesi. Let $\bar{B}$ be the scheme theoretic closure of a Borel subgroup $B$ of $G$ in $\bar{G}$. Then we prove that the connected component, containing the identity automorphism of the group of all algebraic automorphisms of $\bar{B}$ is $B\times B$. |
---|---|
ISSN: | 1778-3569 |