Let $G$ be a simple algebraic group of adjoint type over the field of complex numbers, different from $\operatorname{PSL}(2,\mathbb{C})$. Let $\bar{G}$ be the wonderful compactification of $G$ constructed by C. De Concini and C. Procesi. Let $\bar{B}$ be the scheme theoretic closure of a Borel subgr...

Full description

Saved in:
Bibliographic Details
Main Authors: Subramaniam, Senthamarai Kannan, Negi, Aisha
Format: Article
Language:English
Published: Académie des sciences 2025-06-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.742/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $G$ be a simple algebraic group of adjoint type over the field of complex numbers, different from $\operatorname{PSL}(2,\mathbb{C})$. Let $\bar{G}$ be the wonderful compactification of $G$ constructed by C. De Concini and C. Procesi. Let $\bar{B}$ be the scheme theoretic closure of a Borel subgroup $B$ of $G$ in $\bar{G}$. Then we prove that the connected component, containing the identity automorphism of the group of all algebraic automorphisms of $\bar{B}$ is $B\times B$.
ISSN:1778-3569