Driving-Cycle-Adaptive Energy Management Strategy for Hybrid Energy Storage Electric Vehicles

The energy management strategy (EMS) is a critical technology for pure electric vehicles equipped with hybrid energy storage systems. This study addresses the challenges of limited adaptability to driving cycles and significant battery capacity degradation in lithium battery–supercapacitor hybrid en...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhaocheng Lu, Tiezhu Zhang, Rui Li, Xinyu Ni
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:World Electric Vehicle Journal
Subjects:
Online Access:https://www.mdpi.com/2032-6653/16/6/313
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The energy management strategy (EMS) is a critical technology for pure electric vehicles equipped with hybrid energy storage systems. This study addresses the challenges of limited adaptability to driving cycles and significant battery capacity degradation in lithium battery–supercapacitor hybrid energy storage systems by proposing an adaptive EMS based on Dynamic Programming-Optimized Control Rules (DP-OCR). Dynamic programming is employed to optimize the rule-based control strategy, while the grey wolf optimizer (GWO) is utilized to enhance the least squares support vector machine (LSSVM) driving cycle recognition model. The optimized driving cycle recognition model is integrated with the improved rule-based control strategy, facilitating adaptive adjustment of control parameters based on driving cycle identification results. This integration enables optimal power distribution between lithium batteries and supercapacitors, thereby improving the EMS’s adaptability to varying driving conditions and extending battery lifespan. Simulation results under complex driving cycles indicate that, compared to conventional deterministic rule-based EMS and single-battery vehicles, the proposed DP-OCR-based adaptive EMS reduces overall energy consumption by 8.29% and 17.48%, respectively.
ISSN:2032-6653