Transformer-Guided Serial Knowledge Distillation for High-Precision Anomaly Detection
Unsupervised anomaly detection (AD) remains a notable challenge in computer vision research, due to the inherent absence of annotated anomalous data and the unpredictable nature of anomaly manifestations. To address these challenges, a novel Transformer-based knowledge distillation framework is prop...
में बचाया:
| मुख्य लेखकों: | Danyang Wang, Bingyan Wang |
|---|---|
| स्वरूप: | लेख |
| भाषा: | अंग्रेज़ी |
| प्रकाशित: |
IEEE
2025-01-01
|
| श्रृंखला: | IEEE Access |
| विषय: | |
| ऑनलाइन पहुंच: | https://ieeexplore.ieee.org/document/11062580/ |
| टैग: |
टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!
|
समान संसाधन
-
The Role of Teacher Calibration in Knowledge Distillation
द्वारा: Suyoung Kim, और अन्य
प्रकाशित: (2025-01-01) -
Insulator Surface Defect Detection Method Based on Graph Feature Diffusion Distillation
द्वारा: Shucai Li, और अन्य
प्रकाशित: (2025-06-01) -
Transformer Fault Diagnosis Based on Knowledge Distillation and Residual Convolutional Neural Networks
द्वारा: Haikun Shang, और अन्य
प्रकाशित: (2025-06-01) -
Industrial Image Anomaly Detection via Synthetic-Anomaly Contrastive Distillation
द्वारा: Junxian Li, और अन्य
प्रकाशित: (2025-06-01) -
A Review of Knowledge Distillation in Object Detection
द्वारा: Shengjie Cheng, और अन्य
प्रकाशित: (2025-01-01)