Enabling data‐driven collaborative and reproducible environmental synthesis science
Abstract This manuscript shares the lessons learned from providing scientific computing support to over 600 researchers and discipline experts, helping them develop reproducible and scalable analytical workflows to process large amounts of heterogeneous data. When providing scientific computing supp...
Salvato in:
| Autori principali: | , , , , , , , |
|---|---|
| Natura: | Articolo |
| Lingua: | inglese |
| Pubblicazione: |
Wiley
2025-06-01
|
| Serie: | Methods in Ecology and Evolution |
| Soggetti: | |
| Accesso online: | https://doi.org/10.1111/2041-210X.70036 |
| Tags: |
Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!
|