Enabling data‐driven collaborative and reproducible environmental synthesis science

Abstract This manuscript shares the lessons learned from providing scientific computing support to over 600 researchers and discipline experts, helping them develop reproducible and scalable analytical workflows to process large amounts of heterogeneous data. When providing scientific computing supp...

Descrizione completa

Salvato in:
Dettagli Bibliografici
Autori principali: Julien Brun, Nicholas J. Lyon, Angel Chen, Ingrid Slette, Gabriel De La Rosa, Jennifer E. Caselle, Frank W. Davis, Martha R. Downs
Natura: Articolo
Lingua:inglese
Pubblicazione: Wiley 2025-06-01
Serie:Methods in Ecology and Evolution
Soggetti:
Accesso online:https://doi.org/10.1111/2041-210X.70036
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!