Modal Passport Concept for Enhanced Non-Destructive Monitoring and Diagnostics of Wind Turbine Blades
One of the most sensitive parts of a wind turbine to environmental influences are the rotating blades. Today, there are many technologies available to assess blade condition, but they all need to be developed to become more cost-effective and more sensitive to fault detection. The algorithms and met...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-04-01
|
Series: | NDT |
Subjects: | |
Online Access: | https://www.mdpi.com/2813-477X/3/2/9 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the most sensitive parts of a wind turbine to environmental influences are the rotating blades. Today, there are many technologies available to assess blade condition, but they all need to be developed to become more cost-effective and more sensitive to fault detection. The algorithms and methods of the modal passport discussed in this paper propose a non-destructive technique already used for helicopter blade condition monitoring and diagnostics. This technique requires adaptation to wind turbine blades because they have larger dimensions, other materials and design, and operate under other conditions. To provide this adaptation, computational and experimental data on the modal properties of the blades must be obtained. The first stage of the study is planned to be performed on a scale model on stationary and rotating test rigs. At this stage of the study, algorithms and methods for the formation of a roadmap to develop a modal passport for a series of composite models of a wind turbine blade are considered. The initial stage of modal passport development included FE modeling of the blade model, calculation of modal parameters, fabricating the blades, and preparing the test equipment. Quantitative assessment of modal tests volume made it possible to plan the step-by-step execution of the roadmap for development and experimental application of the modal passport of wind turbine blade models. |
---|---|
ISSN: | 2813-477X |