UAM Vertiport Network Design Considering Connectivity

Urban Air Mobility (UAM) is envisioned to revolutionize urban transportation by improving traffic efficiency and mitigating surface-level congestion. One of the fundamental challenges in implementing UAM systems lies in the optimal siting of vertiports, which requires a delicate balance among infras...

Full description

Saved in:
Bibliographic Details
Main Authors: Wentao Zhang, Taesung Hwang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Systems
Subjects:
Online Access:https://www.mdpi.com/2079-8954/13/7/607
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Urban Air Mobility (UAM) is envisioned to revolutionize urban transportation by improving traffic efficiency and mitigating surface-level congestion. One of the fundamental challenges in implementing UAM systems lies in the optimal siting of vertiports, which requires a delicate balance among infrastructure construction costs, passenger access costs to their assigned vertiports, and the operational connectivity of the resulting vertiport network. This study develops an integrated mathematical model for vertiport location decision, aiming to minimize total system cost while ensuring UAM network connectivity among the selected vertiport locations. To efficiently solve the problem and improve solution quality, a hybrid genetic algorithm is developed by incorporating a Minimum Spanning Tree (MST)-based connectivity enforcement mechanism, a fundamental concept in graph theory that connects all nodes in a given network with minimal total link cost, enhanced by a greedy initialization strategy. The effectiveness of the proposed algorithm is demonstrated through numerical experiments conducted on both synthetic datasets and the real-world transportation network of New York City. The results show that the proposed hybrid methodology not only yields high-quality solutions but also significantly reduces computational time, enabling faster convergence. Overall, this study provides practical insights for UAM infrastructure planning by emphasizing demand-oriented vertiport siting and inter-vertiport connectivity, thereby contributing to both theoretical development and large-scale implementation in complex urban environments.
ISSN:2079-8954