Evaluation of Machine Learning Models for Enhancing Sustainability in Additive Manufacturing

Additive manufacturing (AM) presents significant opportunities for advancing sustainability through optimized process control and material utilization. This research investigates the application of machine learning (ML) models to directly associate AM process parameters with sustainability metrics,...

Full description

Saved in:
Bibliographic Details
Main Authors: Waqar Shehbaz, Qingjin Peng
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Technologies
Subjects:
Online Access:https://www.mdpi.com/2227-7080/13/6/228
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Additive manufacturing (AM) presents significant opportunities for advancing sustainability through optimized process control and material utilization. This research investigates the application of machine learning (ML) models to directly associate AM process parameters with sustainability metrics, which is often a challenge by experimental methods alone. Initially, experimental data are generated by systematically varying key AM parameters, layer height, infill density, infill pattern, build orientation, and number of shells. Subsequently, four ML models, Linear Regression, Decision Trees, Random Forest, and Gradient Boosting, are trained and evaluated. Hyperparameter tuning is conducted using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Box constraints (L-BFGS-B) algorithm, which demonstrates the superior computational efficiency compared to traditional approaches such as grid and random search. Among the models, Random Forest yields the highest predictive accuracy and lowest mean squared error across all target sustainability indicators: energy consumption, part weight, scrap weight, and production time. The results confirm the efficacy of ML in predicting sustainability outcomes when supported by robust experimental data. This research offers a scalable and computationally efficient approach to enhancing sustainability in AM processes and contributes to data-driven decision-making in sustainable manufacturing.
ISSN:2227-7080