Application of Seed Miss Prevention System for a Spoon-Wheel Type Precision Seed Metering Device: Effectiveness and Limitations

Precision seeding plays a critical role in optimizing crop yield and resource efficiency. This study evaluates the application of a Seed Miss Prevention System (SMPS) integrated with a spoon-wheel precision metering device to mitigate seed misses and enhance its performance. A combination of Discret...

Full description

Saved in:
Bibliographic Details
Main Authors: Aldiyar Bakirov, Nikolay Kostyuchenkov, Oksana Kostyuchenkova, Alexsandr Grishin, Aruzhan Omarbekova, Nikolay Zagainov
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/15/13/1363
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precision seeding plays a critical role in optimizing crop yield and resource efficiency. This study evaluates the application of a Seed Miss Prevention System (SMPS) integrated with a spoon-wheel precision metering device to mitigate seed misses and enhance its performance. A combination of Discrete Element Method (DEM) simulations, electrical hardware design, mechanical retrofitting, software development and laboratory experiments was employed to assess the effectiveness of the system across multiple seed cultivars and operating speeds. Experimental results demonstrated that the SMPS significantly reduced seed misses at lower operational speeds (3–10 rpm), with the implementation of a dual-sensor configuration further improving detection accuracy by filtering out false positives. At higher speeds (≥15 rpm), however, seed miss rates increased, particularly for irregularly shaped seeds like white beans ‘Great Northern’, due to the mechanical limitations of the metering device. Statistical analyses, including Tukey’s HSD test, confirmed the effectiveness of the SMPS in reducing miss rates across different seed types. Despite these improvements, complete elimination of seed misses was not achieved, highlighting the need for further optimization in seed miss detection. Future research should explore adaptations for higher-speed metering devices and field-scale validations. The findings underscore the potential of SMPS technology in advancing precision agriculture by improving seeding accuracy and operational efficiency.
ISSN:2077-0472