Machine learning revealed giant thermal conductivity reduction by strong phonon localization in two-angle disordered twisted multilayer graphene

Abstract In two-dimensional (2D) layer-stacked materials, the twist angle between layers provides extensive freedom to explore novel physics and engineer remarkable thermal transport properties. We discovered that the cross-plane thermal conductivity of multilayer graphene can be effectively control...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingwen Wang, Zheng Zhu, Tianran Jiang, Ke Chen
Format: Article
Language:English
Published: Nature Portfolio 2025-06-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01678-3
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In two-dimensional (2D) layer-stacked materials, the twist angle between layers provides extensive freedom to explore novel physics and engineer remarkable thermal transport properties. We discovered that the cross-plane thermal conductivity of multilayer graphene can be effectively controlled by arranging the layers with two specific twist angles in a defined sequence. Disorderly aperiodic twisted graphene layers lead to the localization of phonons, substantially reducing the cross-plane thermal transport via the interference of coherent phonons. We employed non-equilibrium molecular dynamics simulations combined with machine learning approach, to study heat transport in the two-angle disordered multilayer stacks, and identified within the constrained structural space the optimal stacking sequence that can minimize the cross-plane thermal conductivity. Compared to pristine graphite, the optimized structure can reduce thermal conductivity by up to 80%. Through analysis of phonon transport properties across different structures, we revealed the underlying physical mechanism of phonon localization.
ISSN:2057-3960