Molecular and Genetic Pathogenesis of Oral Cancer: A Basis for Customized Diagnosis and Treatment

Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety of their upper aerodigest...

Full description

Saved in:
Bibliographic Details
Main Authors: Leonor Barroso, Pedro Veiga, Joana Barbosa Melo, Isabel Marques Carreira, Ilda Patrícia Ribeiro
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Biology
Subjects:
Online Access:https://www.mdpi.com/2079-7737/14/7/842
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oral cancer, the most common form of head and neck cancer, is worldwide a serious public health problem. Most patients present a locally advanced disease, and face poor prognosis, even with multimodality treatment. They may also develop second primary tumors in the entirety of their upper aerodigestive tract. The most altered signaling pathways are the PI3K/AKT/mTOR, TP53, RB, and the WNT/β-catenin pathways. Genomic and molecular cytogenetic analyses have revealed frequent losses at 3p, 8p, 9p, and 18q, along with gains at 3q, 7p, 8q, and 11q, and several genes frequently affected have been identified, such as <i>TP53</i>, <i>CCND1</i>, <i>CTTN</i>, <i>CDKN2A</i>, <i>EGFR</i>, <i>HRAS</i>, <i>PI3K</i>, <i>ADAM9</i>, <i>MGAM</i>, <i>SIRPB1</i>, and <i>FAT1</i>, among others. Various epigenetic alterations were also found, such as the global hypomethylation and hypermethylation of <i>CDKN2A</i>, <i>APC</i>, <i>MGMT</i>, <i>PTEN</i>, <i>CDH1</i>, <i>TFP12</i>, <i>SOX17</i>, <i>GATA4</i>, <i>ECAD</i>, <i>MGMT</i>, and <i>DAPK</i>. Several microRNAs are upregulated in oral cancer, including miR-21, miR-24, miR-31, miR-184, miR-211, miR-221, and miR-222, while others are downregulated, such as miR-203, miR-100, miR-200, miR-133a, miR-133b, miR-138, and miR-375. The knowledge of this molecular pathogenesis has not yet been translated into clinical practice, apart from the use of cetuximab, an EGFR antibody. Oral tumors are also genetically heterogenous and affect several pathways, which means that, due to the continuous evolution of these genetic alterations, a single biopsy is not sufficient to fully evaluate the most adequate molecular targets when more drugs become available. Liquid biopsies, either resorting to circulating tumor cells, extracellular vesicles or cell-free nucleic acids, have the potential to bypass this problem, and have potential prognostic and staging value. We critically review the current knowledge on the molecular, genetic and epigenetic alterations in oral cancer, as well as the applications and challenges of liquid biopsies in its diagnosis, follow-up, and prognostic stratification.
ISSN:2079-7737