Biomimetic Chitosan-Based Hydrogels for Sustainable Wound Healing With AI/ML Insights
Wound healing process is associated with multifaceted complications and is a functional way to advance the therapeutic process. Polymeric biomaterials exhibit structural mimicry with the extracellular matrix of the tissue to be regenerated and they also avoid chronic inflammation and immunological r...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Open Journal of Engineering in Medicine and Biology |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10969627/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wound healing process is associated with multifaceted complications and is a functional way to advance the therapeutic process. Polymeric biomaterials exhibit structural mimicry with the extracellular matrix of the tissue to be regenerated and they also avoid chronic inflammation and immunological responses. Chitosan, a biopolymer demonstrates exceptional healing properties because of its biocompatibility, biodegradability, antimicrobial nature and affinity for biomolecules. Biomaterials consisting of chitosan along with herbal extracts could be ideal for wound healing. Click chemistry can provide one of the best ways to combine these bio-actives with chitosan. Advancing wound healing strategies with artificial intelligence /machine learning approaches can be employed further to boost the clinical efficacies of bioactive-loaded chitosan composite hydrogels. This review article investigates functionalized wound dressings with special emphasis on chitosan-based hydrogels, their effects on wound healing, and advanced approaches to increase hydrogel benefits by adding bioactive substances to form nanocomposites. |
---|---|
ISSN: | 2644-1276 |