In this survey, we provide a review of recent progresses in the local well-posedness problem of Einstein equations in (3+1)-D with low regularity and its applications.

Saved in:
Bibliographic Details
Main Author: Wang, Qian
Format: Article
Language:English
Published: Académie des sciences 2025-01-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.278/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839606575480700928
author Wang, Qian
author_facet Wang, Qian
author_sort Wang, Qian
collection DOAJ
description In this survey, we provide a review of recent progresses in the local well-posedness problem of Einstein equations in (3+1)-D with low regularity and its applications.
format Article
id doaj-art-47a21eb6c4624f4f9ff2e4416fecdd11
institution Matheson Library
issn 1873-7234
language English
publishDate 2025-01-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-47a21eb6c4624f4f9ff2e4416fecdd112025-08-01T07:35:13ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342025-01-01353G115117510.5802/crmeca.27810.5802/crmeca.278Wang, Qian0https://orcid.org/0000-0002-1374-4012Mathematical Institute, University of Oxford, UKIn this survey, we provide a review of recent progresses in the local well-posedness problem of Einstein equations in (3+1)-D with low regularity and its applications.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.278/Cauchy problemEinstein equationsLocal well-posedness
spellingShingle Wang, Qian
Comptes Rendus. Mécanique
Cauchy problem
Einstein equations
Local well-posedness
topic Cauchy problem
Einstein equations
Local well-posedness
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.278/