On a semitopological semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ when a family $\mathscr{F}$ consists of inductive non-empty subsets of $\omega$
Let $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ be the bicyclic semigroup extension for the family $\mathscr{F}$ of ${\omega}$-closed subsets of $\omega$ which is introduced in \cite{Gutik-Mykhalenych=2020}. We study topologizations of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2023-03-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/373 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ be the bicyclic semigroup extension for the family $\mathscr{F}$ of ${\omega}$-closed subsets of $\omega$ which is introduced in \cite{Gutik-Mykhalenych=2020}.
We study topologizations of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ for the family $\mathscr{F}$ of inductive ${\omega}$-closed subsets of $\omega$. We generalize Eberhart-Selden and Bertman-West results about topologizations of the bicyclic semigroup \cite{Bertman-West-1976, Eberhart-Selden=1969} and show that every Hausdorff shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is discrete and if a Hausdorff semitopological semigroup $S$ contains $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ as a proper dense subsemigroup then $S\setminus\boldsymbol{B}_{\omega}^{\mathscr{F}}$ is an ideal of $S$. Also, we prove the following dichotomy: every Hausdorff locally compact shift-continuous topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is either compact or discrete. As a consequence of the last result we obtain that every Hausdorff locally compact semigroup topology on $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ with an adjoined zero is discrete and every Hausdorff locally compact shift-continuous topology on the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}\sqcup I$ with an adjoined compact ideal $I$ is either compact or the ideal $I$ is open, which extent many results about locally compact topologizations of some classes of semigroups onto extensions of the semigroup $\boldsymbol{B}_{\omega}^{\mathscr{F}}$. |
---|---|
ISSN: | 1027-4634 2411-0620 |