EDMR: An Enhanced Dynamic Multi-Hop Routing Protocol with a Novel Sleeping Mechanism for Wireless Sensor Networks

Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising results in r...

Full description

Saved in:
Bibliographic Details
Main Authors: Emad Alnawafa, Mohammad Allaymoun
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/14/4510
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Numerous protocols have emerged to address the energy depletion problem in Wireless Sensor Networks (WSNs). Among these protocols, the Dynamic Multi-Hop Routing (DMR) protocol adopts a dynamic technique for routing data across the network. The use of the DMR protocol has shown promising results in reducing energy consumption, prolonging the network lifetime, and increasing throughput. To improve the performance of WSNs, this paper proposes the Enhanced Dynamic Multi-Hop Routing (EDMR) protocol as a modification of the DMR protocol. The EDMR protocol introduces an effective sleeping mechanism that selectively deactivates clusters that do not generate significantly updated data for a specific duration. This mechanism reduces redundant transmissions, thereby saving energy and prolonging the network lifetime. The EDMR protocol incorporates static and dynamic approaches to support two major categories of applications: monitoring and event-driven applications. The proposed protocol is evaluated against the DMR protocol, the Enhanced Dynamic Multi-Hop Technique (EMDHT-LEACH) protocol, and the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. The simulation results demonstrate that the EDMR protocol mitigates energy depletion, extends the network lifetime, increases stability, and improves network throughput toward the Base Station (BS), while reducing packet redundancy compared with the other protocols.
ISSN:1424-8220