Fault Prediction of Hydropower Station Based on CNN-LSTM-GAN with Biased Data

Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network (C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bei Liu, Xiao Wang, Zhaoxin Zhang, Zhenjie Zhao, Xiaoming Wang, Ting Liu
Format: Artikel
Sprache:Englisch
Veröffentlicht: MDPI AG 2025-07-01
Schriftenreihe:Energies
Schlagworte:
Online-Zugang:https://www.mdpi.com/1996-1073/18/14/3772
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network (CNNs) and long short-term memory network (LSTM) with a generative adversarial network (GAN). Firstly, a reliability mechanism based on principal component analysis (PCA) is designed to solve the problem of data bias caused by multiple monitoring devices. Then, the CNN-LSTM network is used to predict time series data, and the GAN is used to expand fault data samples to solve the problem of an unbalanced data distribution. Meanwhile, a multi-scale feature extraction network with time–frequency information is designed to improve the accuracy of fault detection. Finally, a dynamic multi-task training algorithm is proposed to ensure the convergence and training efficiency of the deep models. Experimental results show that compared with RNN, GRU, SVM, and threshold detection algorithms, the proposed fault prediction method improves the accuracy performance by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.5</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>7.8</mn><mo>%</mo></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.3</mn><mo>%</mo></mrow></semantics></math></inline-formula>, with at least a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>160</mn><mo>%</mo></mrow></semantics></math></inline-formula> improvement in the fault recall rate.
ISSN:1996-1073