Evaluating the Vulnerability of Hiding Techniques in Cyber-Physical Systems Against Deep Learning-Based Side-Channel Attacks
(1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional counterm...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/13/6981 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional countermeasures, such as hiding techniques, attempt to obscure power consumption patterns; however, their effectiveness has been increasingly challenged. This study evaluates the vulnerability of dummy power traces against deep learning-based SCAs (DL-SCAs). (2) Methods: A power trace dataset was generated using a simulation environment based on Quick Emulator (QEMU) and GNU Debugger (GDB), integrating dummy traces to obfuscate execution signatures. DL models, including a Recurrent Neural Network (RNN), a Bidirectional RNN (Bi-RNN), and a Multi-Layer Perceptron (MLP), were used to evaluate classification performance. (3) Results: The models trained with dummy traces achieved high classification accuracy, with the MLP model reaching 97.81% accuracy and an F1-score of 97.77%. Despite the added complexity, DL models effectively distinguished real and dummy traces, highlighting limitations in existing hiding techniques. (4) Conclusions: These findings highlight the need for adaptive countermeasures against DL-SCAs. Future research should explore dynamic obfuscation techniques, adversarial training, and comprehensive evaluations of broader cryptographic algorithms. This study underscores the urgency of evolving security paradigms to defend against artificial intelligence-powered attacks. |
---|---|
ISSN: | 2076-3417 |