Evaluating the Vulnerability of Hiding Techniques in Cyber-Physical Systems Against Deep Learning-Based Side-Channel Attacks

(1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional counterm...

Full description

Saved in:
Bibliographic Details
Main Authors: Seungun Park, Aria Seo, Muyoung Cheong, Hyunsu Kim, JaeCheol Kim, Yunsik Son
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/13/6981
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(1) Background: Side-channel attacks (SCAs) exploit unintended information leakage to compromise cryptographic security. In cyber-physical systems (CPSs), embedded systems are inherently constrained by limited resources, restricting the implementation of complex countermeasures. Traditional countermeasures, such as hiding techniques, attempt to obscure power consumption patterns; however, their effectiveness has been increasingly challenged. This study evaluates the vulnerability of dummy power traces against deep learning-based SCAs (DL-SCAs). (2) Methods: A power trace dataset was generated using a simulation environment based on Quick Emulator (QEMU) and GNU Debugger (GDB), integrating dummy traces to obfuscate execution signatures. DL models, including a Recurrent Neural Network (RNN), a Bidirectional RNN (Bi-RNN), and a Multi-Layer Perceptron (MLP), were used to evaluate classification performance. (3) Results: The models trained with dummy traces achieved high classification accuracy, with the MLP model reaching 97.81% accuracy and an F1-score of 97.77%. Despite the added complexity, DL models effectively distinguished real and dummy traces, highlighting limitations in existing hiding techniques. (4) Conclusions: These findings highlight the need for adaptive countermeasures against DL-SCAs. Future research should explore dynamic obfuscation techniques, adversarial training, and comprehensive evaluations of broader cryptographic algorithms. This study underscores the urgency of evolving security paradigms to defend against artificial intelligence-powered attacks.
ISSN:2076-3417