An Elevation-Coupled Multivariate Regression Model for GNSS-Based FY-4A Precipitable Water Vapor

The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable...

Full description

Saved in:
Bibliographic Details
Main Authors: Yaping Gao, Jing Lin, Junqiang Han, Tong Luo, Min Zhou, Zhen Jiang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/14/2371
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine the water vapor content based on FY-4A satellite remote sensing data, thereby improving its accuracy. Taking Hong Kong as an experimental area, we investigated the correlation between GNSS PWV and FY-4A PWV, confirming the feasibility of utilizing GNSS PWV to calibrate FY-4A PWV. Subsequently, by examining the differences between the two PWV values, we found that the elevation of the stations affects the consistency of PWV measurement. Based on this finding, the elevation data are introduced to construct a multivariate linear regression correction model with a first-order polynomial. To evaluate the performance of the proposed model, a comparison with other correction models is made, including second-order polynomials and power functions. The results indicate that the elevation-integrated water vapor correction model improves the root mean square error (RMSE) by 27.4% and the MAE by 26.7%, and reduces the bias from 0.592 to nearly 0. Its accuracy surpasses that of second-order polynomial and power function models, demonstrating a considerable improvement in the precision of FY-4A.
ISSN:2072-4292