Vessel Safety Navigation Under the Influence of Antarctic Sea Ice

Antarctic navigation encounters substantial challenges due to the dynamic and perilous characteristics of sea ice, which pose threats to vessel safety and operational efficiency. Existing risk assessment methodologies frequently lack real-time adaptability, while strategies for icebreaker convoys re...

Full description

Saved in:
Bibliographic Details
Main Authors: Weipeng Liu, Daowei Yan, Zekun Peng, Maohong Xie, Yanglong Sun
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/7/1267
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antarctic navigation encounters substantial challenges due to the dynamic and perilous characteristics of sea ice, which pose threats to vessel safety and operational efficiency. Existing risk assessment methodologies frequently lack real-time adaptability, while strategies for icebreaker convoys remain insufficiently quantified. To address these deficiencies, this study introduces an integrated framework that combines satellite-based sea ice monitoring, operational risk prediction, and icebreaker escort optimization. First, polar research routes and hydrographic conditions are systematically analyzed to enhance navigation planning. Second, a risk assessment system is developed by leveraging satellite-derived sea ice density and thickness data, facilitating a near-real-time hazard assessment (subject to satellite data latency) evaluation with 96.3% accuracy in ice type classification and a 15% improvement in risk prediction precision compared to conventional methods. Finally, kinematic safety criteria for icebreaker-escorted convoys are established, specifying speed-dependent distance thresholds to minimize collision risks, achieving optimal speeds of 1.4–2.3 knots for PC3-class vessels and 10–20% speed improvements for escorted vessels in cleared channels. The findings offer actionable insights into polar route optimization, risk mitigation, and safe ice navigation protocols, thereby directly supporting operational decision making in Antarctic waters.
ISSN:2077-1312