Stability Diagrams of Bed Evolution for Vertically Averaged and Moment (VAM) Models
This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/12/1997 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents, for the first time, a detailed linear stability analysis (LSA) of bedform evolution under low-flow conditions using a one-dimensional vertically averaged and moment (1D-VAM) approach. The analysis focuses exclusively on bedload transport. The classical Saint-Venant shallow water equations are extended to incorporate non-hydrostatic pressure terms and a modified moment-based Chézy resistance formulation is adopted that links bed shear stress to both the depth-averaged velocity and its first moment (near-bed velocity). Applying a small-amplitude perturbation analysis to an initially flat bed, while neglecting suspended load and bed slope effects, reveals two distinct modes of morphological instability under low-Froude-number conditions. The first mode, associated with ripple formation, features short wavelengths independent of flow depth, following the relation <i>F<sup>2</sup> = 1</i>/<i>(kh</i>), and varies systematically with both the Froude and Shields numbers. The second mode corresponds to dune formation, emerging within a dimensionless wavenumber range of 0.17 to 0.9 as roughness increases and the dimensionless Chézy coefficient <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>C</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></semantics></math></inline-formula> decreases from 20 to 10. The resulting predictions of the dominant wavenumbers agree well with recent experimental observations. Critically, the model naturally produces a phase lag between sediment transport and bedform geometry without empirical lag terms. The 1D-VAM framework with Exner equation offers a physically consistent and computationally efficient tool for predicting bedform instabilities in erodible channels. This study advances the capability of conventional depth-averaged models to simulate complex bedform evolution processes. |
---|---|
ISSN: | 2227-7390 |