Smart Grid IoT Framework for Predicting Energy Consumption Using Federated Learning Homomorphic Encryption

Homomorphic Encryption (HE) introduces new dimensions of security and privacy within federated learning (FL) and internet of things (IoT) frameworks that allow preservation of user privacy when handling data for FL occurring in Smart Grid (SG) technologies. In this paper, we propose a novel SG IoT f...

Full description

Saved in:
Bibliographic Details
Main Authors: Filip Jerkovic, Nurul I. Sarkar, Jahan Ali
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/12/3700
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Homomorphic Encryption (HE) introduces new dimensions of security and privacy within federated learning (FL) and internet of things (IoT) frameworks that allow preservation of user privacy when handling data for FL occurring in Smart Grid (SG) technologies. In this paper, we propose a novel SG IoT framework to provide a solution for predicting energy consumption while preserving user privacy in a smart grid system. The proposed framework is based on the integration of FL, edge computing, and HE principles to provide a robust and secure framework to conduct machine learning workloads end-to-end. In the proposed framework, edge devices are connected to each other using P2P networking, and the data exchanged between peers is encrypted using Cheon–Kim–Kim–Song (CKKS) fully HE. The results obtained show that the system can predict energy consumption as well as preserve user privacy in SG scenarios. The findings provide an insight into the SG IoT framework that can help network researchers and engineers contribute further towards developing a next-generation SG IoT system.
ISSN:1424-8220