Local Iontophoretic Application for Pharmacological Induction of Long-Term Synaptic Depression

Long-term depression (LTD), a key form of synaptic plasticity, is typically induced through regulated Ca2+ entry via NMDA receptors and achieved by prolonged (up to hundreds of seconds) low-frequency presynaptic stimulation or bath application of NMDA receptor agonists. Electrophysiological approach...

Full description

Saved in:
Bibliographic Details
Main Authors: Borys Olifirov, Oleksandra Fedchenko, Alexandr Dovgan, Daria Babets, Volodymyr Krotov, Volodymyr Cherkas, Pavel Belan
Format: Article
Language:English
Published: Bio-protocol LLC 2025-06-01
Series:Bio-Protocol
Online Access:https://bio-protocol.org/en/bpdetail?id=5338&type=0
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Long-term depression (LTD), a key form of synaptic plasticity, is typically induced through regulated Ca2+ entry via NMDA receptors and achieved by prolonged (up to hundreds of seconds) low-frequency presynaptic stimulation or bath application of NMDA receptor agonists. Electrophysiological approach to LTD induction requires specialized equipment, while bath applications limit productivity, as only one neuron per sample may be recorded. Here, we present a simple and effective protocol for pharmacological modeling of LTD in primary cultured neurons. This approach relies on highly localized iontophoretic application of NMDA, which induces LTD in individual cells, enhancing experimental throughput. We have analyzed spatio-temporal patterns of iontophoretic drug delivery and demonstrated how this technique may be combined with electrophysiological and live-cell imaging approaches to investigate LTD-related changes in synaptic strength and Ca2+-dependent signaling of neuronal Ca2+ sensor proteins.
ISSN:2331-8325