Mechanisms of Acute Kidney Injury–Chronic Kidney Disease Transition: Unraveling Maladaptive Repair and Therapeutic Opportunities

Acute kidney injury (AKI) causes damage to the renal epithelium, initiating a reparative process intended to restore renal function. Although effective repair can result in the complete recovery of kidney function, this process is frequently incomplete. In instances where repair is unsuccessful, the...

Full description

Saved in:
Bibliographic Details
Main Authors: Dongxue Xu, Xiaoyu Zhang, Jingjing Pang, Yiming Li, Zhiyong Peng
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/15/6/794
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acute kidney injury (AKI) causes damage to the renal epithelium, initiating a reparative process intended to restore renal function. Although effective repair can result in the complete recovery of kidney function, this process is frequently incomplete. In instances where repair is unsuccessful, the kidney experiences maladaptive alterations that may progressively result in chronic kidney disease (CKD), a phenomenon referred to as failed repair. This condition is precipitated by hypotensive, septic, or toxic insults, which initiate a series of pathophysiological processes, including microcirculatory dysfunction, the activation of inflammatory responses, and the death of tubular epithelial cells. These events collectively compromise renal function and trigger a complex repair response. This review provides a comprehensive examination of the multifactorial mechanisms underlying the initiation and progression of AKI, the regenerative pathways facilitating structural recovery in severely damaged kidneys, and the critical transition from adaptive repair to maladaptive remodeling. Central to this transition are mechanisms such as epigenetic reprogramming, G2/M cell-cycle arrest, cellular senescence, mitochondrial dysfunction, metabolism reprogramming, and cell death, which collectively drive the progression of CKD. These mechanistic insights offer a robust foundation for the development of targeted therapeutic strategies aimed at enhancing adaptive renal repair.
ISSN:2218-273X