NONCONVENTIONAL METHODS USED TO STUDY EARTH´S THERMAL PROPERTIES INCLUDING GEOTHERMAL HEAT FLOW

Nonconventional methods have been used to obtain geothermal density data in regions without adequate holes need to make measurements or where detailed distribution values of this parameter are required. The method used in the present work uses data obtained from seismic tomography, velocity distribu...

Full description

Saved in:
Bibliographic Details
Main Author: Maria Rosa Duque
Format: Article
Language:English
Published: University of Kragujevac 2025-06-01
Series:Proceedings on Engineering Sciences
Subjects:
Online Access:https://pesjournal.net/journal/v7-n2/29.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonconventional methods have been used to obtain geothermal density data in regions without adequate holes need to make measurements or where detailed distribution values of this parameter are required. The method used in the present work uses data obtained from seismic tomography, velocity distribution of P waves and VP/VS ratio values, to define “warm” and “cold” regions in the crust. The distribution and intensity of radioactive heat sources near the surface is obtained using radiometric data from rocks. The heat flow at the surface of the Earth is obtained by addition of the heat generated by the sources studied with the heat flowing from deeper regions. With the method presented it is possible to obtain detailed maps of geothermal heat flow density at the Earth’s surface. It is also possible to obtain the depth location of “warm” layers with fluids that can be used in several applications. Physical properties including radioactivity, thermal conductivity and heat expansion coefficient may be used to explain some earthquakes located near the contact zone of different geological materials.
ISSN:2620-2832
2683-4111