Identification and Optimization of Urban Avian Ecological Corridors in Kunming: Framework Construction Based on Multi-Model Coupling and Multi-Scenario Simulation
This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Diversity |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-2818/17/6/427 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study employs a multi-model coupling and multi-scenario simulation approach to construct a framework for identifying and optimizing avian ecological corridors in the urban core of Kunming. The framework focuses on the ecological needs of resident birds (64.72%), woodland-dependent birds (39.87%), and low-mobility birds (47.29%) to address habitat fragmentation and enhance urban biodiversity conservation. This study identifies 54 core ecological corridors, totaling 183.58 km, primarily located in forest–urban transition zones. These corridors meet the continuous habitat requirements of resident and woodland-dependent birds, providing a stable environment for species. Additionally, 55 general corridors, spanning 537.30 km, focus on facilitating short-distance movements of low-mobility birds, enhancing habitat connectivity in urban fringe areas through ecological stepping stones. Eighteen ecological pinch points (total area 5.63 km<sup>2</sup>) play a crucial role in the network. The northern pinch points, dominated by forest land, serve as vital breeding and refuge habitats for woodland-dependent and resident birds. The southern pinch points, located in wetland-forest ecotones, function as critical stopover sites for low-mobility waterbirds. Degradation of these pinch points would significantly reduce available habitat for birds. The 27 ecological barrier points (total area 89.79 km<sup>2</sup>), characterized by urban land use, severely impede the movement of woodland-dependent birds and increase the migratory energy expenditure of low-mobility birds in agricultural areas. Following optimization, resistance to resident birds in core corridors is significantly reduced, and habitat utilization by generalist species in general corridors is markedly improved. Moreover, multi-scenario optimization measures, including the addition of ecological stepping stones, barrier improvement, and pinch-point protection, have effectively increased ecological sources, met avian habitat requirements, and secured migratory pathways for waterbirds. These measures validate the scientific rationale of a multidimensional management strategy. The comprehensive framework developed in this study, integrating species needs, corridor design, and spatial optimization, provides a replicable model for avian ecological corridor construction in subtropical montane cities. Future research may incorporate bird-tracking technologies to further validate corridor efficacy and explore planning pathways for climate-adaptive corridors. |
---|---|
ISSN: | 1424-2818 |