On equicontinuity of families of mappings between Riemannian surfaces with respect to prime ends

Given a domain of some Riemannian surface, we consider questions related to the possibility of a continuous extension to the boundary of one class of Sobolev mappings. It is proved that such maps have a continuous boundary extension in terms of prime ends, and under some additional restrictions thei...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Sevost'yanov, O. P. Dovhopiatyi, N. S. Ilkevych, V. P. Kalenska
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2022-06-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/299
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given a domain of some Riemannian surface, we consider questions related to the possibility of a continuous extension to the boundary of one class of Sobolev mappings. It is proved that such maps have a continuous boundary extension in terms of prime ends, and under some additional restrictions their families are equicontinuous at inner and boundary points of the domain. We have separately considered the cases of homeomorphisms and mappings with branching.
ISSN:1027-4634
2411-0620