MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE

For a class of sets with multiple terms $$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\},$$having...

Full description

Saved in:
Bibliographic Details
Main Author: Elias Zikkos
Format: Article
Language:English
Published: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 2020-07-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/209
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839603334602817536
author Elias Zikkos
author_facet Elias Zikkos
author_sort Elias Zikkos
collection DOAJ
description For a class of sets with multiple terms $$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\},$$having density \(d\) counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers\linebr eak \(\{d_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots ,\mu_n-1\} \) satisfying certain growth conditions, we consider a moment problem of the form $$\int_{-\infty}^{\infty}e^{-2w(t)}t^k e^{\lambda_n t}f(t)\, dt=d_{n,k},\quad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,2,\dots, \mu_n-1,$$ in weighted \(L^2 (-\infty, \infty)\) spaces. We obtain a solution \(f\) which extends analytically as an entire function, admitting a Taylor–Dirichlet series representation $$ f(z)=\sum_{n=1}^{\infty}\Big(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\Big) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C},\quad\forall\,\, z\in \mathbb{C}. $$ The proof depends on our previous work where we characterized the closed span of the exponential system \(\{t^k e^{\lambda_n t}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1\}\) in weighted \(L^2 (-\infty, \infty)\) spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.
format Article
id doaj-art-3e3f1a0d0e7f44cea3eefd066b5ac66e
institution Matheson Library
issn 2414-3952
language English
publishDate 2020-07-01
publisher Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics
record_format Article
series Ural Mathematical Journal
spelling doaj-art-3e3f1a0d0e7f44cea3eefd066b5ac66e2025-08-02T05:57:57ZengUral Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and MechanicsUral Mathematical Journal2414-39522020-07-016110.15826/umj.2020.1.014100MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINEElias Zikkos0Khalifa University, PO. Box 127788 Abu DhabiFor a class of sets with multiple terms $$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times}, \underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots, \underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\},$$having density \(d\) counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers\linebr eak \(\{d_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots ,\mu_n-1\} \) satisfying certain growth conditions, we consider a moment problem of the form $$\int_{-\infty}^{\infty}e^{-2w(t)}t^k e^{\lambda_n t}f(t)\, dt=d_{n,k},\quad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,2,\dots, \mu_n-1,$$ in weighted \(L^2 (-\infty, \infty)\) spaces. We obtain a solution \(f\) which extends analytically as an entire function, admitting a Taylor–Dirichlet series representation $$ f(z)=\sum_{n=1}^{\infty}\Big(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\Big) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C},\quad\forall\,\, z\in \mathbb{C}. $$ The proof depends on our previous work where we characterized the closed span of the exponential system \(\{t^k e^{\lambda_n t}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1\}\) in weighted \(L^2 (-\infty, \infty)\) spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.https://umjuran.ru/index.php/umj/article/view/209moment problems, exponential systems, biorthogonal families, weighted banach spaces, bessel and riesz–fischer sequences
spellingShingle Elias Zikkos
MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
Ural Mathematical Journal
moment problems, exponential systems, biorthogonal families, weighted banach spaces, bessel and riesz–fischer sequences
title MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
title_full MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
title_fullStr MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
title_full_unstemmed MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
title_short MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
title_sort moment problems in weighted l 2 spaces on the real line
topic moment problems, exponential systems, biorthogonal families, weighted banach spaces, bessel and riesz–fischer sequences
url https://umjuran.ru/index.php/umj/article/view/209
work_keys_str_mv AT eliaszikkos momentproblemsinweightedl2spacesontherealline