Physics-Guided Memory Network for building energy modeling

Accurate energy consumption forecasting is essential for efficient resource management and sustainability in the building sector. Deep learning models are highly successful but struggle with limited historical data and become unusable when historical data are unavailable, such as in newly constructe...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Umair Danish, Kashif Ali, Kamran Siddiqui, Katarina Grolinger
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Energy and AI
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666546825000709
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate energy consumption forecasting is essential for efficient resource management and sustainability in the building sector. Deep learning models are highly successful but struggle with limited historical data and become unusable when historical data are unavailable, such as in newly constructed buildings. On the other hand, physics-based models, such as EnergyPlus, simulate energy consumption without relying on historical data but require extensive building parameter specifications and considerable time to model a building. This paper introduces a Physics-Guided Memory Network (PgMN), a neural network that integrates predictions from deep learning and physics-based models to address their limitations. PgMN comprises a Parallel Projection Layers to process incomplete inputs, a Memory Unit to account for persistent biases, and a Memory Experience Module to optimally extend forecasts beyond their input range and produce output. Theoretical evaluation shows that components of PgMN are mathematically valid for performing their respective tasks. The PgMN was evaluated on short-term energy forecasting at an hourly resolution, critical for operational decision-making in smart grid and smart building systems. Experimental validation shows accuracy and applicability of PgMN in diverse scenarios such as newly constructed buildings, missing data, sparse historical data, and dynamic infrastructure changes. This paper provides a promising solution for energy consumption forecasting in dynamic building environments, enhancing model applicability in scenarios where historical data are limited or unavailable or when physics-based models are inadequate.
ISSN:2666-5468