A Machine Learning-Based Method for Lithology Identification of Outcrops Using TLS-Derived Spectral and Geometric Features

Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-R...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanlin Shao, Peijin Li, Ran Jing, Yaxiong Shao, Lang Liu, Kunpeng Zhao, Binqing Gan, Xiaolei Duan, Longfan Li
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/14/2434
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-RFGeo, for terrestrial laser scanning (TLS) outcrop point clouds, which integrates spectral and geometric features. The workflow involves several key steps. First, lithological recognition units are created through regular grid segmentation. From these units, spectral reflectance statistics (e.g., mean, standard deviation, kurtosis, and other related metrics), and geometric morphological features (e.g., surface variation rate, curvature, planarity, among others) are extracted. Next, a double-layer random forest model is employed for lithology identification. In the shallow layer, the Gini index is used to select relevant features for a coarse classification of vegetation, conglomerate, and mud–sandstone. The deep-layer module applies an optimized feature set to further classify thinly interbedded sandstone and mudstone. Geological prior knowledge, such as stratigraphic attitudes, is incorporated to spatially constrain and post-process the classification results, enhancing their geological plausibility. The method was tested on a TLS dataset from the Yueyawan outcrop of the Qingshuihe Formation, located on the southern margin of the Junggar Basin in China. Results demonstrate that the integration of spectral and geometric features significantly improves classification performance, with the Macro F1-score increasing from 0.65 (with single-feature input) to 0.82. Further, post-processing with stratigraphic constraints boosts the overall classification accuracy to 93%, outperforming SVM (59.2%), XGBoost (67.8%), and PointNet (75.3%). These findings demonstrate that integrating multi-source features and geological prior constraints effectively addresses the challenges of lithological identification in complex outcrops, providing a novel approach for high-precision geological modeling and exploration.
ISSN:2072-4292