Design of an Unequal-Teeth Stator Structure for a Low-Vibration Noise Permanent Magnet Synchronous Machine Considering Teeth Modulation
To address the high vibration and noise in fractional-slot concentrated-winding permanent magnet synchronous machines for electric vehicles, this study focuses on a 30-pole, 36-slot fractional-slot concentrated-winding permanent magnet synchronous machine. These issues are mainly caused by the modul...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | World Electric Vehicle Journal |
Subjects: | |
Online Access: | https://www.mdpi.com/2032-6653/16/7/339 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address the high vibration and noise in fractional-slot concentrated-winding permanent magnet synchronous machines for electric vehicles, this study focuses on a 30-pole, 36-slot fractional-slot concentrated-winding permanent magnet synchronous machine. These issues are mainly caused by the modulation of high-order radial electromagnetic forces into low-order radial electromagnetic forces, known as the teeth modulation effect. The characteristics of radial electromagnetic forces are analyzed using the Maxwell stress tensor method, and the modulation process is examined. A novel unequal-teeth stator structure is proposed to reduce vibration and noise. Finite element simulations are performed to investigate how this structure affects the amplitude of modulated low-order radial electromagnetic forces. The optimal ratio of the unequal-teeth design is identified to effectively suppress the modulation effect. Simulation results indicate that an appropriately chosen unequal-teeth proportion leads to significant improvements in the machine’s vibration and noise performance across various operating conditions, providing a preliminary validation of the feasibility and effectiveness of the proposed unequal-teeth design methodology. |
---|---|
ISSN: | 2032-6653 |