The Analysis of Resource Efficiencies for the Allocation Methods Applied in the Proposed OAM&WDM-PON Architecture
Infrastructures of access networks that mostly exploit the optical fiber medium effectively utilizing wavelength division multiplexing techniques play a key role in advanced F5G fixed networks. The orbital angular momentum technique is highly promising for use within passive optical networks to furt...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Photonics |
Subjects: | |
Online Access: | https://www.mdpi.com/2304-6732/12/7/632 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Infrastructures of access networks that mostly exploit the optical fiber medium effectively utilizing wavelength division multiplexing techniques play a key role in advanced F5G fixed networks. The orbital angular momentum technique is highly promising for use within passive optical networks to further increase transmission capacities. So, the utilization of common network resources in wavelength and optical domains will be more important. The main purpose of this paper is to present an analysis of resource efficiencies for various allocation methods applied in the proposed OAM&WDM-PON architecture with a conventional point-to-multipoint topology. This contribution introduces novel static, dynamic and dynamic customized allocation methods for a proposed network design with the utilization of only passive optical splitters in remote nodes. These WDM and OAM channel allocation methods are oriented towards minimizing the number of working wavelengths and OAM channels that will be used for compliance with customers’ requests for data transmitting in the proposed point-to-multipoint OAM&WDM-PON architecture. For analyzing and evaluating the considered allocation methods, a simulation model related to the proposed P2MP OAM&WDM-PON design realized in the MATLAB (R2022A) programming environment is presented with acquired simulation results. Finally, resource efficiencies of the presented novel allocation methods are evaluated from the viewpoint of application in future OAM&WDM-PONs. |
---|---|
ISSN: | 2304-6732 |