GPS and Galileo Precise Point Positioning Performance with Tropospheric Estimation Using Different Products: BRDM, RTS, HAS, and MGEX
The performance of Precise Point Positioning (PPP) using different Global Navigation Satellite System (GNSS) product sets, including broadcast ephemerides, International GNSS Service Real-Time Service (IGS-RTS) corrections, Galileo High Accuracy Service (HAS) corrections, and precise products from t...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/12/2080 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of Precise Point Positioning (PPP) using different Global Navigation Satellite System (GNSS) product sets, including broadcast ephemerides, International GNSS Service Real-Time Service (IGS-RTS) corrections, Galileo High Accuracy Service (HAS) corrections, and precise products from the Center for Orbit Determination in Europe (CODE) Multi-GNSS Experiment (MGEX), has been evaluated. The availability of solutions, convergence time, position accuracy and Zenith Tropospheric Delay (ZTD) estimation across these products were analyzed using simulated real-time and postprocessing static modes, using data from globally distributed stations with a 1 s observation interval. The results indicate that precise products from the MGEX provide the highest accuracy, achieving centimeter-level precision in post-processed mode. Real-time simulated solutions, such as HAS and IGS-RTS, deliver promising results, with Galileo HAS meeting its target accuracy of 20 cm horizontally and 40 cm vertically and a convergence time under 5 min. However, Global Positioning System (GPS) performance within HAS is limited by a significantly lower correction availability—around 67% on average compared to over 95% for Galileo—which negatively impacts PPP performance. ZTD estimation results show that real-time services (HAS, IGS-RTS) achieved errors within 1–3 cm, sufficient for meteorological applications. This study highlights the growing importance of HAS in real-time positioning applications and suggests further improvements in GPS for enhanced performance. |
---|---|
ISSN: | 2072-4292 |