Study on the Effects of Wind Direction on the Characteristics of Vortex-Induced Vibration for a Square Cylinder
Due to its complex mechanism of action, the wind-resistant design of square cross-section structures against vortex-induced vibration (VIV) still presents significant challenges. The angle of the wind direction is an important factor affecting the VIV characteristics of square cylinders. A series of...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Buildings |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-5309/15/12/2129 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Due to its complex mechanism of action, the wind-resistant design of square cross-section structures against vortex-induced vibration (VIV) still presents significant challenges. The angle of the wind direction is an important factor affecting the VIV characteristics of square cylinders. A series of stationary model pressure tests were performed and an elastic supporting model was used in the present study. The effects of the wind direction angle on parameters corresponding to fluid–structure interaction were analyzed with reference to the Strouhal number, range of “lock-in”, amplitude, and aerodynamic forces. The Strouhal number of the square cylinder was greatest at a 16° wind direction angle. When the wind direction angle was 10°, the wind speed range of vortex-induced vibration (VIV) of the square cylinder was the greatest, and the corresponding value was the smallest when the wind direction angle ranged from 20° to 45°. Within the vibration interval, the extreme value of the amplitude was smallest when the wind direction angle was 10°, and the extreme value of the amplitude was greatest when the wind direction angle was 30°. The vibration state had a minimal influence on the mean lift coefficient and a relatively large influence on the mean drag coefficient. |
---|---|
ISSN: | 2075-5309 |