Earth's future climate and its variability simulated at 9 km global resolution

<p>Earth's climate response to increasing greenhouse gas emissions occurs on a variety of spatial scales. To assess climate risks on regional scales and implement adaptation measures, policymakers and stakeholders often require climate change information on scales that are considerably sm...

Full description

Saved in:
Bibliographic Details
Main Authors: J.-Y. Moon, J. Streffing, S.-S. Lee, T. Semmler, M. Andrés-Martínez, J. Chen, E.-B. Cho, J.-E. Chu, C. L. E. Franzke, J. P. Gärtner, R. Ghosh, J. Hegewald, S. Hong, D.-W. Kim, N. Koldunov, J.-Y. Lee, Z. Lin, C. Liu, S. N. Loza, W. Park, W. Roh, D. V. Sein, S. Sharma, D. Sidorenko, J.-H. Son, M. F. Stuecker, Q. Wang, G. Yi, M. Zapponini, T. Jung, A. Timmermann
Format: Article
Language:English
Published: Copernicus Publications 2025-07-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/16/1103/2025/esd-16-1103-2025.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839626377086631936
author J.-Y. Moon
J.-Y. Moon
J. Streffing
J. Streffing
J. Streffing
S.-S. Lee
S.-S. Lee
T. Semmler
T. Semmler
M. Andrés-Martínez
M. Andrés-Martínez
J. Chen
E.-B. Cho
E.-B. Cho
J.-E. Chu
C. L. E. Franzke
C. L. E. Franzke
J. P. Gärtner
R. Ghosh
J. Hegewald
J. Hegewald
S. Hong
D.-W. Kim
D.-W. Kim
N. Koldunov
J.-Y. Lee
J.-Y. Lee
Z. Lin
C. Liu
S. N. Loza
W. Park
W. Park
W. Roh
W. Roh
D. V. Sein
D. V. Sein
D. V. Sein
S. Sharma
S. Sharma
D. Sidorenko
J.-H. Son
J.-H. Son
J.-H. Son
M. F. Stuecker
Q. Wang
G. Yi
G. Yi
M. Zapponini
T. Jung
T. Jung
A. Timmermann
A. Timmermann
author_facet J.-Y. Moon
J.-Y. Moon
J. Streffing
J. Streffing
J. Streffing
S.-S. Lee
S.-S. Lee
T. Semmler
T. Semmler
M. Andrés-Martínez
M. Andrés-Martínez
J. Chen
E.-B. Cho
E.-B. Cho
J.-E. Chu
C. L. E. Franzke
C. L. E. Franzke
J. P. Gärtner
R. Ghosh
J. Hegewald
J. Hegewald
S. Hong
D.-W. Kim
D.-W. Kim
N. Koldunov
J.-Y. Lee
J.-Y. Lee
Z. Lin
C. Liu
S. N. Loza
W. Park
W. Park
W. Roh
W. Roh
D. V. Sein
D. V. Sein
D. V. Sein
S. Sharma
S. Sharma
D. Sidorenko
J.-H. Son
J.-H. Son
J.-H. Son
M. F. Stuecker
Q. Wang
G. Yi
G. Yi
M. Zapponini
T. Jung
T. Jung
A. Timmermann
A. Timmermann
author_sort J.-Y. Moon
collection DOAJ
description <p>Earth's climate response to increasing greenhouse gas emissions occurs on a variety of spatial scales. To assess climate risks on regional scales and implement adaptation measures, policymakers and stakeholders often require climate change information on scales that are considerably smaller than the typical resolution of global climate models (<span class="inline-formula"><i>O</i></span>(100 km)). To close this important knowledge gap and consider the impact of small-scale processes on the global scale, we adopted a novel iterative global earth system modeling protocol. This protocol provides key information on earth's future climate and its variability on storm-resolving scales (less than<span id="page1104"/> 10 km). To this end we used the coupled earth system model OpenIFS–FESOM2 (AWI-CM3; Open Integrated Forecasting System – Finite volumE Sea ice–Ocean Model) with a 9 km atmospheric resolution (TCo1279) and a 4–25 km ocean resolution. We conducted a 20-year 1950 control simulation and four 10-year-long coupled transient simulations for the 2000s, 2030s, 2060s, and 2090s. These simulations were initialized from the trajectory of a coarser 31 km (TCo319) SSP5-8.5 transient greenhouse warming simulation of the coupled model with the same high-resolution ocean. Similar to the coarser-resolution TCo319 transient simulation, the high-resolution TCo1279 simulation with the SSP5-8.5 scenario exhibits a strong warming response relative to present-day conditions, reaching up to 6.5 °C by the end of the century at CO<span class="inline-formula"><sub>2</sub></span> levels of about 1100 ppm. The TCo1279 high-resolution simulations show a substantial increase in regional information and climate change granularity relative to the TCo319 experiment (or any other lower-resolution model), especially over topographically complex terrain. Examples of enhanced regional information include projected changes in temperature, rainfall, winds, extreme events, tropical cyclones, and the hydroclimate teleconnection patterns of the El Niño–Southern Oscillation and the North Atlantic Oscillation on scales of less than 1000 km. The novel iterative modeling protocol that facilitates coupled storm-resolving global climate simulations for future climate time slices offers major benefits over regional climate models. However, it also has some drawbacks, such as initialization shocks and resolution-dependent biases and climate sensitivities, which are further discussed.</p>
format Article
id doaj-art-2e17dfb3567e4a0d973c0361f283412c
institution Matheson Library
issn 2190-4979
2190-4987
language English
publishDate 2025-07-01
publisher Copernicus Publications
record_format Article
series Earth System Dynamics
spelling doaj-art-2e17dfb3567e4a0d973c0361f283412c2025-07-17T13:21:45ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872025-07-01161103113410.5194/esd-16-1103-2025Earth's future climate and its variability simulated at 9&thinsp;km global resolutionJ.-Y. Moon0J.-Y. Moon1J. Streffing2J. Streffing3J. Streffing4S.-S. Lee5S.-S. Lee6T. Semmler7T. Semmler8M. Andrés-Martínez9M. Andrés-Martínez10J. Chen11E.-B. Cho12E.-B. Cho13J.-E. Chu14C. L. E. Franzke15C. L. E. Franzke16J. P. Gärtner17R. Ghosh18J. Hegewald19J. Hegewald20S. Hong21D.-W. Kim22D.-W. Kim23N. Koldunov24J.-Y. Lee25J.-Y. Lee26Z. Lin27C. Liu28S. N. Loza29W. Park30W. Park31W. Roh32W. Roh33D. V. Sein34D. V. Sein35D. V. Sein36S. Sharma37S. Sharma38D. Sidorenko39J.-H. Son40J.-H. Son41J.-H. Son42M. F. Stuecker43Q. Wang44G. Yi45G. Yi46M. Zapponini47T. Jung48T. Jung49A. Timmermann50A. Timmermann51Center for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyPaleoclimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyDepartment of Mathematics & Logistics, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyResearch and Applications Division, Met Éireann, 65-67 Glasnevin Hill, D09 Y921, Dublin, IrelandClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyHigh-Performance Computing and Data Processing Group, Scientific Computing Department, Computing and Data Centre, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaSchool of Energy and Environment, City University of Hong Kong, Hong Kong, ChinaCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaDepartment of Integrated Climate System Science, Pusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyDevelopment Department, Gauß-IT-Zentrum, Braunschweig University of Technology (GITZ), Braunschweig, GermanySSG International ISG Services, Lenovo Global Technology Korea LLC, Seoul, 06141, Republic of KoreaCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaDepartment of Integrated Climate System Science, Pusan National University, Busan, 46241, Republic of KoreaSchool of Energy and Environment, City University of Hong Kong, Hong Kong, ChinaSchool of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaDepartment of Integrated Climate System Science, Pusan National University, Busan, 46241, Republic of KoreaCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyPaleoclimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyMoscow Institute of Physics and Technology, Moscow, RussiaCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of KoreaClimate Prediction Division, Korea Meteorological Administration, Daejeon, 35208, Republic of KoreaDepartment of Oceanography and International Pacific Research Center, University of Hawai`i at Mānoa, Honolulu, 96822, USAClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaDepartment of Climate System, Pusan National University, Busan, 46241, Republic of KoreaClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyClimate Dynamics Department, Climate Sciences Division, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, GermanyDepartment of Physics and Electrical Engineering, University of Bremen, 28359, Bremen, GermanyCenter for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of KoreaPusan National University, Busan, 46241, Republic of Korea<p>Earth's climate response to increasing greenhouse gas emissions occurs on a variety of spatial scales. To assess climate risks on regional scales and implement adaptation measures, policymakers and stakeholders often require climate change information on scales that are considerably smaller than the typical resolution of global climate models (<span class="inline-formula"><i>O</i></span>(100 km)). To close this important knowledge gap and consider the impact of small-scale processes on the global scale, we adopted a novel iterative global earth system modeling protocol. This protocol provides key information on earth's future climate and its variability on storm-resolving scales (less than<span id="page1104"/> 10 km). To this end we used the coupled earth system model OpenIFS–FESOM2 (AWI-CM3; Open Integrated Forecasting System – Finite volumE Sea ice–Ocean Model) with a 9 km atmospheric resolution (TCo1279) and a 4–25 km ocean resolution. We conducted a 20-year 1950 control simulation and four 10-year-long coupled transient simulations for the 2000s, 2030s, 2060s, and 2090s. These simulations were initialized from the trajectory of a coarser 31 km (TCo319) SSP5-8.5 transient greenhouse warming simulation of the coupled model with the same high-resolution ocean. Similar to the coarser-resolution TCo319 transient simulation, the high-resolution TCo1279 simulation with the SSP5-8.5 scenario exhibits a strong warming response relative to present-day conditions, reaching up to 6.5 °C by the end of the century at CO<span class="inline-formula"><sub>2</sub></span> levels of about 1100 ppm. The TCo1279 high-resolution simulations show a substantial increase in regional information and climate change granularity relative to the TCo319 experiment (or any other lower-resolution model), especially over topographically complex terrain. Examples of enhanced regional information include projected changes in temperature, rainfall, winds, extreme events, tropical cyclones, and the hydroclimate teleconnection patterns of the El Niño–Southern Oscillation and the North Atlantic Oscillation on scales of less than 1000 km. The novel iterative modeling protocol that facilitates coupled storm-resolving global climate simulations for future climate time slices offers major benefits over regional climate models. However, it also has some drawbacks, such as initialization shocks and resolution-dependent biases and climate sensitivities, which are further discussed.</p>https://esd.copernicus.org/articles/16/1103/2025/esd-16-1103-2025.pdf
spellingShingle J.-Y. Moon
J.-Y. Moon
J. Streffing
J. Streffing
J. Streffing
S.-S. Lee
S.-S. Lee
T. Semmler
T. Semmler
M. Andrés-Martínez
M. Andrés-Martínez
J. Chen
E.-B. Cho
E.-B. Cho
J.-E. Chu
C. L. E. Franzke
C. L. E. Franzke
J. P. Gärtner
R. Ghosh
J. Hegewald
J. Hegewald
S. Hong
D.-W. Kim
D.-W. Kim
N. Koldunov
J.-Y. Lee
J.-Y. Lee
Z. Lin
C. Liu
S. N. Loza
W. Park
W. Park
W. Roh
W. Roh
D. V. Sein
D. V. Sein
D. V. Sein
S. Sharma
S. Sharma
D. Sidorenko
J.-H. Son
J.-H. Son
J.-H. Son
M. F. Stuecker
Q. Wang
G. Yi
G. Yi
M. Zapponini
T. Jung
T. Jung
A. Timmermann
A. Timmermann
Earth's future climate and its variability simulated at 9&thinsp;km global resolution
Earth System Dynamics
title Earth's future climate and its variability simulated at 9&thinsp;km global resolution
title_full Earth's future climate and its variability simulated at 9&thinsp;km global resolution
title_fullStr Earth's future climate and its variability simulated at 9&thinsp;km global resolution
title_full_unstemmed Earth's future climate and its variability simulated at 9&thinsp;km global resolution
title_short Earth's future climate and its variability simulated at 9&thinsp;km global resolution
title_sort earth s future climate and its variability simulated at 9 thinsp km global resolution
url https://esd.copernicus.org/articles/16/1103/2025/esd-16-1103-2025.pdf
work_keys_str_mv AT jymoon earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jymoon earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jstreffing earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jstreffing earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jstreffing earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT sslee earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT sslee earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT tsemmler earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT tsemmler earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT mandresmartinez earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT mandresmartinez earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jchen earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT ebcho earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT ebcho earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jechu earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT clefranzke earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT clefranzke earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jpgartner earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT rghosh earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jhegewald earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jhegewald earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT shong earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dwkim earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dwkim earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT nkoldunov earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jylee earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jylee earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT zlin earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT cliu earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT snloza earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT wpark earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT wpark earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT wroh earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT wroh earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dvsein earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dvsein earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dvsein earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT ssharma earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT ssharma earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT dsidorenko earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jhson earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jhson earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT jhson earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT mfstuecker earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT qwang earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT gyi earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT gyi earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT mzapponini earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT tjung earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT tjung earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT atimmermann earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution
AT atimmermann earthsfutureclimateanditsvariabilitysimulatedat9thinspkmglobalresolution