Self-Supervised Feature Disentanglement for Deepfake Detection

Existing deepfake detection methods heavily rely on specific training data distributions and struggle to generalize to unknown forgery techniques. To address the challenge, this paper focuses on two critical research gaps: (1) the lack of systematic mining of standard features across multiple forger...

Full description

Saved in:
Bibliographic Details
Main Authors: Bo Yan, Pan Liu, Yumin Yang, Yanming Guo
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/2024
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Existing deepfake detection methods heavily rely on specific training data distributions and struggle to generalize to unknown forgery techniques. To address the challenge, this paper focuses on two critical research gaps: (1) the lack of systematic mining of standard features across multiple forgery methods; (2) the unresolved distribution shift problem in the strong supervised learning paradigm. To tackle these issues, we propose a self-supervised learning framework based on feature disentanglement, which enhances the generalization ability of detection models by uncovering the intrinsic features of forged content. The core method comprises three key components: self-supervised sample construction and training samples for feature disentanglement, which are generated via an image self-mixing mechanism; feature disentanglement network, where the input image is decomposed into two parts—content features irrelevant to forgery and discriminative forgery-related features; and conditional decoder verification, where both types of features are used to reconstruct the image, with forgery-related features serving as conditional vectors to guide the reconstruction process. Orthogonal constraints on features are enforced to mitigate the overfitting problem in traditional methods. Experimental results demonstrate that, compared with state-of-the-art methods, the proposed framework exhibits superior generalization performance in cross-unknown forgery technique detection tasks, effectively breaking through the dependency bottleneck of traditional supervised learning on training data distributions. This study provides a universal solution for deepfake detection that does not rely on specific forgery techniques. The model’s robustness in real-world complex scenarios is significantly improved by mining the common essence of forgery features.
ISSN:2227-7390