Sex chromosome gene expression associated with vocal learning following hormonal manipulation in female zebra finches

Zebra finches are sexually dimorphic vocal learners. Males learn to sing by imitating mature conspecifics, but females do not. Absence of song in females is associated with partial atrophy and apparent repression of several vocal learning brain regions during development. However, atrophy can be pre...

Full description

Saved in:
Bibliographic Details
Main Authors: Matthew Davenport, Ha Na Choe, Hiroaki Matsunami, Erich Jarvis
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2025-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/89425
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zebra finches are sexually dimorphic vocal learners. Males learn to sing by imitating mature conspecifics, but females do not. Absence of song in females is associated with partial atrophy and apparent repression of several vocal learning brain regions during development. However, atrophy can be prevented, and vocal learning retained in females when given early pharmacological estrogen treatment. To screen for candidate drivers of this sexual dimorphism, we performed an unbiased transcriptomic analysis of song learning nuclei specializations relative to the surrounding regions from either sex, treated with vehicle or estrogen until 30 days of age when divergence between the sexes becomes anatomically apparent. Analyses of transcriptomes by RNA sequencing identified song nuclei-specialized gene expressed modules associated with sex and estrogen manipulation. Female HVC and Area X gene modules were specialized by estrogen supplementation, exhibiting a subset of the transcriptomic specializations observed in males. Female robust nucleus of the arcopallium (RA) and lateral magnocellular nucleus of the anterior nidopallium (LMAN) specialized modules were less dependent on estrogen. The estrogen-induced gene modules in females were enriched for anatomical development functions and strongly correlated to the expression of several Z sex chromosome genes. We present a hypothesis where reduced dosage and expression of these Z chromosome genes suppress the full development of the song system and thus song learning behavior, which is partially rescued by estrogen treatment.
ISSN:2050-084X