Dependency-Aware Entity–Attribute Relationship Learning for Text-Based Person Search

Text-based person search (TPS), a critical technology for security and surveillance, aims to retrieve target individuals from image galleries using textual descriptions. The existing methods face two challenges: (1) ambiguous attribute–noun association (AANA), where syntactic ambiguities lead to inc...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Xia, Wenguang Gan, Xinpan Yuan
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Big Data and Cognitive Computing
Subjects:
Online Access:https://www.mdpi.com/2504-2289/9/7/182
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Text-based person search (TPS), a critical technology for security and surveillance, aims to retrieve target individuals from image galleries using textual descriptions. The existing methods face two challenges: (1) ambiguous attribute–noun association (AANA), where syntactic ambiguities lead to incorrect associations between attributes and the intended nouns; and (2) textual noise and relevance imbalance (TNRI), where irrelevant or non-discriminative tokens (e.g., ‘wearing’) reduce the saliency of critical visual attributes in the textual description. To address these aspects, we propose the dependency-aware entity–attribute alignment network (DEAAN), a novel framework that explicitly tackles AANA through dependency-guided attention and TNRI via adaptive token filtering. The DEAAN introduces two modules: (1) dependency-assisted implicit reasoning (DAIR) to resolve AANA through syntactic parsing, and (2) relevance-adaptive token selection (RATS) to suppress TNRI by learning token saliency. Experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate state-of-the-art performance, with the DEAAN achieving a Rank-1 accuracy of 76.71% and an mAP of 69.07% on CUHK-PEDES, surpassing RDE by 0.77% in Rank-1 and 1.51% in mAP. Ablation studies reveal that DAIR and RATS individually improve Rank-1 by 2.54% and 3.42%, while their combination elevates the performance by 6.35%, validating their synergy. This work bridges structured linguistic analysis with adaptive feature selection, demonstrating practical robustness in surveillance-oriented TPS scenarios.
ISSN:2504-2289