Exploration of Salak Peel Extract Activities for Cosmeceutical Applications and Its Encapsulation in Ethosomes Using Green Method

Salak peel extract has various biological properties befitting cosmeceutical applications; however, their practical uses are still limited due to their low water solubility and stability. Encapsulation technology was employed to alleviate these issues. In this work, we presented a simple method to p...

Full description

Saved in:
Bibliographic Details
Main Authors: Supreeda Tambunlertchai, Raweewan Thiramanas, Yodsathorn Wongngam, Pimnipa Yodkrahom, Sornsawan Batthong, Kunat Suktham, Suvimol Surassmo, Udom Asawapirom, Duangporn Polpanich
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Cosmetics
Subjects:
Online Access:https://www.mdpi.com/2079-9284/12/3/122
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Salak peel extract has various biological properties befitting cosmeceutical applications; however, their practical uses are still limited due to their low water solubility and stability. Encapsulation technology was employed to alleviate these issues. In this work, we presented a simple method to prepare ethosome-encapsulated salak peel extract using green solvents (ethanol and water). For this purpose, we used 95% ethanol to extract salak peel and explored its activities. Results showed that, in addition to anti-oxidant, the extract also showed anti-tyrosinase, anti-inflammatory, and anti-bacterial (against <i>S. aureus</i>) activities. These activities indicate its potential uses in cosmeceutical applications. We further encapsulated the extract in ethosomes using a stirrer and green solvents for the preparation methods. The yielded ethosomes exhibited a size range of 120 to 205 nm, polydispersity index (PDI) of 0.15 to 0.25, and zeta potential of −35 to −60 mV depending on the amount of L-α-phosphatidylcholine used. The highest encapsulation efficiency was approximately 30%. The antiradical capacity and anti-inflammatory activities of salak peel extract were also found to be maintained after the encapsulation process. An in vitro biocompatibility study of the extract after encapsulation was also performed. The results not only indicated good biocompatibility, but also the potential skin-rejuvenating ability of salak peel ethosomes. A stability study was also performed, and the results suggested that these ethosomes were stable at different conditions. With further investigation, salak peel ethosomes, as presented here, can be suitable for cosmeceutical applications.
ISSN:2079-9284