Analysis of Precipitation Totals Based on Radar and Rain Gauge Data

The relationship between radar reflectivity (Z) and rainfall intensity (R) plays a crucial role in estimating precipitation and serves as a foundation for flood risk assessment. However, empirical Z–R relationships often introduce considerable uncertainty, making the correction of rainfall estimatio...

Full description

Saved in:
Bibliographic Details
Main Authors: Karol Dzwonkowski, Ireneusz Winnicki, Sławomir Pietrek, Jolanta Siewert
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/13/2157
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relationship between radar reflectivity (Z) and rainfall intensity (R) plays a crucial role in estimating precipitation and serves as a foundation for flood risk assessment. However, empirical Z–R relationships often introduce considerable uncertainty, making the correction of rainfall estimation errors a key challenge in remote-sensing-based applications. Developing an effective approach to reduce these deviations is, therefore, essential to improve the accuracy of radar-based precipitation measurements. This study aims to develop a methodology for analyzing radar-derived precipitation using dual-polarization radar measurements, with validation based on rain gauge observations. Three well-established Z–R relationships—Marshall–Palmer, Muchnik, and Joss—were applied to radar reflectivity values measured at two heights, 1 km and 1.5 km above ground level. The Marshall–Palmer relationship applied at a height of 1.5 km yielded the smallest deviations from rain gauge measurements. Both the mean absolute error (MAE) and average precipitation difference at this height were consistent, amounting to 1.99 mm, compared to 2.32 mm at 1 km. The range of deviations in all cases was 0.54–7.64 mm at 1.5 km and 0.65–7.18 mm at 1 km. Furthermore, all tested Z–R relationships demonstrated a strong linear correlation with rain gauge data, as indicated by a Pearson correlation coefficient of 0.98. These findings enable the identification of the most accurate Z–R relationships and optimal measurement heights for radar-based precipitation estimation. These results may have important implications for operational applications and the calibration of radar precipitation products.
ISSN:2072-4292