Optimal Location for Electric Vehicle Fast Charging Station as a Dynamic Load for Frequency Control Using Particle Swarm Optimization Method
There are significant emissions of greenhouse gases into the atmosphere from the transportation industry. As a result, the idea that electric vehicles (EVs) offer a revolutionary way to reduce greenhouse gas emissions and our reliance on rapidly depleting petroleum supplies has been put forward. EVs...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | World Electric Vehicle Journal |
Subjects: | |
Online Access: | https://www.mdpi.com/2032-6653/16/7/354 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There are significant emissions of greenhouse gases into the atmosphere from the transportation industry. As a result, the idea that electric vehicles (EVs) offer a revolutionary way to reduce greenhouse gas emissions and our reliance on rapidly depleting petroleum supplies has been put forward. EVs are becoming more common in many nations worldwide, and the rapid uptake of this technology is heavily reliant on the growth of charging stations. This is leading to a significant increase in their number on the road. This rise has created an opportunity for EVs to be integrated with the power system as a Demand Response (DR) resource in the form of an EV fast charging station (EVFCS). To allocate electric vehicle fast charging stations as a dynamic load for frequency control and on specific buses, this study included the optimal location for the EVFCS and the best controller selection to obtain the best outcomes as DR for various network disruptions. The optimal location for the EVFCS is determined by applying transient voltage drop and frequency nadir parameters to the Particle Swarm Optimization (PSO) location model as the first stage of this study. The second stage is to explore the optimal regulation of the dynamic EVFCS load using the PSO approach for the PID controller. PID controller settings are acquired to efficiently support power system stability in the event of disruptions. The suggested model addresses various types of system disturbances—generation reduction, load reduction, and line faults—when it comes to the Kundur Power System and the IEEE 39 bus system. The results show that Bus 1 then Bus 4 of the Kundur System and Bus 39 then Bus 1 in the IEEE 39 bus system are the best locations for dynamic EVFCS. |
---|---|
ISSN: | 2032-6653 |