A Microwave Vision-Enhanced Environmental Perception Method for the Visual Navigation of UAVs
Visual navigation technology holds significant potential for applications involving unmanned aerial vehicles (UAVs). However, the inherent spectral limitations of optical-dependent navigation systems prove particularly inadequate for high-altitude long-endurance (HALE) UAV operations, as they are fu...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/17/12/2107 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Visual navigation technology holds significant potential for applications involving unmanned aerial vehicles (UAVs). However, the inherent spectral limitations of optical-dependent navigation systems prove particularly inadequate for high-altitude long-endurance (HALE) UAV operations, as they are fundamentally constrained in maintaining reliable environment perception under conditions of fluctuating illumination and persistent cloud cover. To address this challenge, this paper introduces microwave vision to assist optical vision for environmental measurement and proposes a novel microwave vision-enhanced environmental perception method. In particular, the richness of perceived environmental information can be enhanced by SAR and optical image fusion processing in the case of sufficient light and clear weather. In order to simultaneously mitigate inherent SAR speckle noise and address existing fusion algorithms’ inadequate consideration of UAV navigation-specific environmental perception requirements, this paper designs a SAR Target-Augmented Fusion (STAF) algorithm based on the target detection of SAR images. On the basis of image preprocessing, this algorithm utilizes constant false alarm rate (CFAR) detection along with morphological operations to extract critical target information from SAR images. Subsequently, the intensity–hue–saturation (IHS) transform is employed to integrate this extracted information into the optical image. The experimental results show that the proposed microwave vision-enhanced environmental perception method effectively utilizes microwave vision to shape target information perception in the electromagnetic spectrum and enhance the information content of environmental measurement results. The unique information extracted by the STAF algorithm from SAR images can effectively enhance the optical images while retaining their main attributes. This method can effectively enhance the environmental measurement robustness and information acquisition ability of the visual navigation system. |
---|---|
ISSN: | 2072-4292 |