Analytic Gaussian functions in the unit disc: probability of zeros absence

In the paper we consider a random analytic function of the form $$f(z,\omega )=\sum\limits_{n=0}^{+\infty}\varepsilon_n(\omega_1)\xi_n(\omega_2)a_nz^n.$$ Here $(\varepsilon_n)$ is a sequence of inde\-pendent Steinhaus random variables, $(\xi_n)$ is a sequence of indepen\-dent standard complex Gaussi...

Full description

Saved in:
Bibliographic Details
Main Authors: A. O. Kuryliak, O. B. Skaskiv
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2023-03-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/401
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839636030337056768
author A. O. Kuryliak
O. B. Skaskiv
author_facet A. O. Kuryliak
O. B. Skaskiv
author_sort A. O. Kuryliak
collection DOAJ
description In the paper we consider a random analytic function of the form $$f(z,\omega )=\sum\limits_{n=0}^{+\infty}\varepsilon_n(\omega_1)\xi_n(\omega_2)a_nz^n.$$ Here $(\varepsilon_n)$ is a sequence of inde\-pendent Steinhaus random variables, $(\xi_n)$ is a sequence of indepen\-dent standard complex Gaussian random variables, and a sequence of numbers $a_n\in\mathbb{C}$ such that $a_0\neq0,\ \varlimsup\limits_{n\to+\infty}\sqrt[n]{|a_n|}=1,\ \sup\{|a_n|\colon n\in\mathbb{N}\}=+\infty.$ We investigate asymptotic estimates of the probability $p_0(r)=\ln^-P\{\omega\colon f(z,\omega )$ has no zeros inside $r\mathbb{D}\}$ as $r\uparrow1$ outside some set $E$ of finite logarithmic measure. Denote $ N(r):=\#\{n\colon |a_n|r^n>1\},$ $ s(r):=2\sum_{n=0}^{+\infty}\ln^+(|a_n|r^{n}), $ $ \alpha:=\varliminf\limits_{r\uparrow1}\frac{\ln N(r)}{\ln\frac{1}{1-r}}. $ The article, in particular, proves the following statements: 1) if $\alpha>4$ then $\displaystyle\lim\limits_{\stackrel{r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln N(r)}=1$; 2) if $\alpha=+\infty$ then $\displaystyle 0\leq\varliminf\limits_{\stackrel{r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln s(r)},\quad \varlimsup\limits_{\stackrel {r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln s(r)}\leq\frac1{2}.$ Here $E$ is a set of finite logarithmic measure. The obtained asymptotic estimates are in a certain sense best possible. Also we give an answer to an open question from \!\cite[p. 119]{Nishry2013} for such random functions.
format Article
id doaj-art-2a0848b690c64e069c99ac2eefd71dba
institution Matheson Library
issn 1027-4634
2411-0620
language deu
publishDate 2023-03-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-2a0848b690c64e069c99ac2eefd71dba2025-07-08T09:05:54ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202023-03-01591294510.30970/ms.59.1.29-45401Analytic Gaussian functions in the unit disc: probability of zeros absenceA. O. Kuryliak0O. B. Skaskiv1Ivan Franko National University of Lviv, Lviv, UkraineDepartment of Mechanics and Mathematics Ivan Franko National University of Lviv Lviv, UkraineIn the paper we consider a random analytic function of the form $$f(z,\omega )=\sum\limits_{n=0}^{+\infty}\varepsilon_n(\omega_1)\xi_n(\omega_2)a_nz^n.$$ Here $(\varepsilon_n)$ is a sequence of inde\-pendent Steinhaus random variables, $(\xi_n)$ is a sequence of indepen\-dent standard complex Gaussian random variables, and a sequence of numbers $a_n\in\mathbb{C}$ such that $a_0\neq0,\ \varlimsup\limits_{n\to+\infty}\sqrt[n]{|a_n|}=1,\ \sup\{|a_n|\colon n\in\mathbb{N}\}=+\infty.$ We investigate asymptotic estimates of the probability $p_0(r)=\ln^-P\{\omega\colon f(z,\omega )$ has no zeros inside $r\mathbb{D}\}$ as $r\uparrow1$ outside some set $E$ of finite logarithmic measure. Denote $ N(r):=\#\{n\colon |a_n|r^n>1\},$ $ s(r):=2\sum_{n=0}^{+\infty}\ln^+(|a_n|r^{n}), $ $ \alpha:=\varliminf\limits_{r\uparrow1}\frac{\ln N(r)}{\ln\frac{1}{1-r}}. $ The article, in particular, proves the following statements: 1) if $\alpha>4$ then $\displaystyle\lim\limits_{\stackrel{r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln N(r)}=1$; 2) if $\alpha=+\infty$ then $\displaystyle 0\leq\varliminf\limits_{\stackrel{r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln s(r)},\quad \varlimsup\limits_{\stackrel {r\uparrow1}{r\notin E}}\frac{\ln(p_0(r)- s(r))}{\ln s(r)}\leq\frac1{2}.$ Here $E$ is a set of finite logarithmic measure. The obtained asymptotic estimates are in a certain sense best possible. Also we give an answer to an open question from \!\cite[p. 119]{Nishry2013} for such random functions.http://matstud.org.ua/ojs/index.php/matstud/article/view/401gaussian analytic functions; steinhaus analytic functions, zeros distribution of random analytic functions.
spellingShingle A. O. Kuryliak
O. B. Skaskiv
Analytic Gaussian functions in the unit disc: probability of zeros absence
Математичні Студії
gaussian analytic functions; steinhaus analytic functions, zeros distribution of random analytic functions.
title Analytic Gaussian functions in the unit disc: probability of zeros absence
title_full Analytic Gaussian functions in the unit disc: probability of zeros absence
title_fullStr Analytic Gaussian functions in the unit disc: probability of zeros absence
title_full_unstemmed Analytic Gaussian functions in the unit disc: probability of zeros absence
title_short Analytic Gaussian functions in the unit disc: probability of zeros absence
title_sort analytic gaussian functions in the unit disc probability of zeros absence
topic gaussian analytic functions; steinhaus analytic functions, zeros distribution of random analytic functions.
url http://matstud.org.ua/ojs/index.php/matstud/article/view/401
work_keys_str_mv AT aokuryliak analyticgaussianfunctionsintheunitdiscprobabilityofzerosabsence
AT obskaskiv analyticgaussianfunctionsintheunitdiscprobabilityofzerosabsence