Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML

Abstract Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts....

Full description

Saved in:
Bibliographic Details
Main Authors: Jan‐Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller‐Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer‐Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke
Format: Article
Language:English
Published: Wiley 2025-05-01
Series:HemaSphere
Online Access:https://doi.org/10.1002/hem3.70132
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839630632483815424
author Jan‐Niklas Eckardt
Waldemar Hahn
Rhonda E. Ries
Szymon D. Chrost
Susann Winter
Sebastian Stasik
Christoph Röllig
Uwe Platzbecker
Carsten Müller‐Tidow
Hubert Serve
Claudia D. Baldus
Christoph Schliemann
Kerstin Schäfer‐Eckart
Maher Hanoun
Martin Kaufmann
Andreas Burchert
Johannes Schetelig
Martin Bornhäuser
Markus Wolfien
Soheil Meshinchi
Christian Thiede
Jan Moritz Middeke
author_facet Jan‐Niklas Eckardt
Waldemar Hahn
Rhonda E. Ries
Szymon D. Chrost
Susann Winter
Sebastian Stasik
Christoph Röllig
Uwe Platzbecker
Carsten Müller‐Tidow
Hubert Serve
Claudia D. Baldus
Christoph Schliemann
Kerstin Schäfer‐Eckart
Maher Hanoun
Martin Kaufmann
Andreas Burchert
Johannes Schetelig
Martin Bornhäuser
Markus Wolfien
Soheil Meshinchi
Christian Thiede
Jan Moritz Middeke
author_sort Jan‐Niklas Eckardt
collection DOAJ
description Abstract Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and TP53 alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2‐year overall survival, achieving area‐under‐the‐curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of NPM1, CEBPA, inv(16), and t(8;21) conferring favorable risk and alterations of TP53, RUNX1, ASXL1, del(5q), ‐7, and ‐17 conferring adverse risk, while FLT3‐ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as TP53, ASXL1, or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context‐sensitive AML treatment strategies.
format Article
id doaj-art-2a055feee1fa40b5b6c1eb2b0d0f75a4
institution Matheson Library
issn 2572-9241
language English
publishDate 2025-05-01
publisher Wiley
record_format Article
series HemaSphere
spelling doaj-art-2a055feee1fa40b5b6c1eb2b0d0f75a42025-07-13T08:46:18ZengWileyHemaSphere2572-92412025-05-0195n/an/a10.1002/hem3.70132Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AMLJan‐Niklas Eckardt0Waldemar Hahn1Rhonda E. Ries2Szymon D. Chrost3Susann Winter4Sebastian Stasik5Christoph Röllig6Uwe Platzbecker7Carsten Müller‐Tidow8Hubert Serve9Claudia D. Baldus10Christoph Schliemann11Kerstin Schäfer‐Eckart12Maher Hanoun13Martin Kaufmann14Andreas Burchert15Johannes Schetelig16Martin Bornhäuser17Markus Wolfien18Soheil Meshinchi19Christian Thiede20Jan Moritz Middeke21Department of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyCenter for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig Dresden GermanyTranslational Science and Therapeutics Division Fred Hutchinson Cancer Research Center Seattle Washington USADepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease University of Leipzig Medical Center Leipzig GermanyDepartment of Medicine V University Hospital Heidelberg Heidelberg GermanyDepartment of Medicine 2, Hematology and Oncology Goethe University Frankfurt Frankfurt GermanyDepartment of Hematology and Oncology University Hospital Schleswig Holstein Kiel GermanyDepartment of Medicine A University Hospital Münster Münster GermanyDepartment of Internal Medicine V Paracelsus Medizinische Privatuniversität and University Hospital Nürnberg Nürnberg GermanyDepartment of Hematology University Hospital Essen Essen GermanyDepartment of Hematology, Oncology and Palliative Care Robert Bosch Hospital Stuttgart GermanyDepartment of Hematology, Oncology and Immunology Philipps‐University Marburg Marburg GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyCenter for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig Dresden GermanyTranslational Science and Therapeutics Division Fred Hutchinson Cancer Research Center Seattle Washington USADepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyDepartment of Internal Medicine I University Hospital Carl Gustav Carus, TUD Dresden University of Technology Dresden GermanyAbstract Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and TP53 alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2‐year overall survival, achieving area‐under‐the‐curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of NPM1, CEBPA, inv(16), and t(8;21) conferring favorable risk and alterations of TP53, RUNX1, ASXL1, del(5q), ‐7, and ‐17 conferring adverse risk, while FLT3‐ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as TP53, ASXL1, or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context‐sensitive AML treatment strategies.https://doi.org/10.1002/hem3.70132
spellingShingle Jan‐Niklas Eckardt
Waldemar Hahn
Rhonda E. Ries
Szymon D. Chrost
Susann Winter
Sebastian Stasik
Christoph Röllig
Uwe Platzbecker
Carsten Müller‐Tidow
Hubert Serve
Claudia D. Baldus
Christoph Schliemann
Kerstin Schäfer‐Eckart
Maher Hanoun
Martin Kaufmann
Andreas Burchert
Johannes Schetelig
Martin Bornhäuser
Markus Wolfien
Soheil Meshinchi
Christian Thiede
Jan Moritz Middeke
Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
HemaSphere
title Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
title_full Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
title_fullStr Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
title_full_unstemmed Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
title_short Age‐stratified machine learning identifies divergent prognostic significance of molecular alterations in AML
title_sort age stratified machine learning identifies divergent prognostic significance of molecular alterations in aml
url https://doi.org/10.1002/hem3.70132
work_keys_str_mv AT janniklaseckardt agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT waldemarhahn agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT rhondaeries agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT szymondchrost agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT susannwinter agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT sebastianstasik agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT christophrollig agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT uweplatzbecker agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT carstenmullertidow agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT hubertserve agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT claudiadbaldus agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT christophschliemann agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT kerstinschafereckart agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT maherhanoun agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT martinkaufmann agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT andreasburchert agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT johannesschetelig agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT martinbornhauser agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT markuswolfien agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT soheilmeshinchi agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT christianthiede agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml
AT janmoritzmiddeke agestratifiedmachinelearningidentifiesdivergentprognosticsignificanceofmolecularalterationsinaml