Biomimetic Lattice Structures Design and Manufacturing for High Stress, Deformation, and Energy Absorption Performance
Lattice structures emerged as a revolutionary class of materials with significant applications in aerospace, biomedical engineering, and mechanical design due to their exceptional strength-to-weight ratio, energy absorption properties, and structural efficiency. This review systematically examines r...
Saved in:
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Biomimetics |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-7673/10/7/458 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lattice structures emerged as a revolutionary class of materials with significant applications in aerospace, biomedical engineering, and mechanical design due to their exceptional strength-to-weight ratio, energy absorption properties, and structural efficiency. This review systematically examines recent advancements in lattice structures, with a focus on their classification, mechanical behavior, and optimization methodologies. Stress distribution, deformation capacity, energy absorption, and computational modeling challenges are critically analyzed, highlighting the impact of manufacturing defects on structural integrity. The review explores the latest progress in hybrid additive manufacturing, hierarchical lattice structures, modeling and simulation, and smart adaptive materials, emphasizing their potential for self-healing and real-time monitoring applications. Furthermore, key research gaps are identified, including the need for improved predictive computational models using artificial intelligence, scalable manufacturing techniques, and multi-functional lattice systems integrating thermal, acoustic, and impact resistance properties. Future directions emphasize cost-effective material development, sustainability considerations, and enhanced experimental validation across multiple length scales. This work provides a comprehensive foundation for future research aimed at optimizing biomimetic lattice structures for enhanced mechanical performance, scalability, and industrial applicability. |
---|---|
ISSN: | 2313-7673 |