Induced mappings on $C_n(X)/{C_n}_K(X)$

Given a continuum $X$ and $n\in\mathbb{N}$. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components. Let ${C_n}_K(X)$ be the hyperspace of all elements in $C_n(X)$ containing $K$ where $K$ is a compact subset of $X$. $C^n_K(X)$ denotes the quotient space $C_n...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Castañeda-Alvarado, J. G. Anaya, J. A. Martínez-Cortez
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2021-10-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/101
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839636028900507648
author E. Castañeda-Alvarado
J. G. Anaya
J. A. Martínez-Cortez
author_facet E. Castañeda-Alvarado
J. G. Anaya
J. A. Martínez-Cortez
author_sort E. Castañeda-Alvarado
collection DOAJ
description Given a continuum $X$ and $n\in\mathbb{N}$. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components. Let ${C_n}_K(X)$ be the hyperspace of all elements in $C_n(X)$ containing $K$ where $K$ is a compact subset of $X$. $C^n_K(X)$ denotes the quotient space $C_n(X)/{C_n}_K(X)$. Given a mapping $f:X\to Y$ between continua, let $C_n(f):C_n(X)\to C_n(Y)$ be the induced mapping by $f$, defined by $C_n(f)(A)=f(A)$. We denote the natural induced mapping between $C^n_K(X)$ and $C^n_{f(K)}(Y)$ by $C^n_K(f)$. In this paper, we study relationships among the mappings $f$, $C_n(f)$ and $C^n_K(f)$ for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.
format Article
id doaj-art-25c9faa3b9c243d19c3b9901e1a518e5
institution Matheson Library
issn 1027-4634
2411-0620
language deu
publishDate 2021-10-01
publisher Ivan Franko National University of Lviv
record_format Article
series Математичні Студії
spelling doaj-art-25c9faa3b9c243d19c3b9901e1a518e52025-07-08T09:14:29ZdeuIvan Franko National University of LvivМатематичні Студії1027-46342411-06202021-10-01561839510.30970/ms.56.1.83-95101Induced mappings on $C_n(X)/{C_n}_K(X)$E. Castañeda-Alvarado0J. G. Anaya1J. A. Martínez-Cortez2Universidad Autónoma del Estado de MéxicoFacultad de ciencias, Universidad Autónoma del Estado de MéxicoFacultad de ciencias, Universidad Autónoma del Estado de MéxicoGiven a continuum $X$ and $n\in\mathbb{N}$. Let $C_n(X)$ be the hyperspace of all nonempty closed subsets of $X$ with at most $n$ components. Let ${C_n}_K(X)$ be the hyperspace of all elements in $C_n(X)$ containing $K$ where $K$ is a compact subset of $X$. $C^n_K(X)$ denotes the quotient space $C_n(X)/{C_n}_K(X)$. Given a mapping $f:X\to Y$ between continua, let $C_n(f):C_n(X)\to C_n(Y)$ be the induced mapping by $f$, defined by $C_n(f)(A)=f(A)$. We denote the natural induced mapping between $C^n_K(X)$ and $C^n_{f(K)}(Y)$ by $C^n_K(f)$. In this paper, we study relationships among the mappings $f$, $C_n(f)$ and $C^n_K(f)$ for the following classes of mappings: almost monotone, atriodic, confluent, joining, light, monotone, open, OM, pseudo-confluent, quasi-monotone, semi-confluent, strongly freely decomposable, weakly confluent, and weakly monotone.http://matstud.org.ua/ojs/index.php/matstud/article/view/101induced mappinghyperspacescontinuumcontainment hyperspacesquotient space
spellingShingle E. Castañeda-Alvarado
J. G. Anaya
J. A. Martínez-Cortez
Induced mappings on $C_n(X)/{C_n}_K(X)$
Математичні Студії
induced mapping
hyperspaces
continuum
containment hyperspaces
quotient space
title Induced mappings on $C_n(X)/{C_n}_K(X)$
title_full Induced mappings on $C_n(X)/{C_n}_K(X)$
title_fullStr Induced mappings on $C_n(X)/{C_n}_K(X)$
title_full_unstemmed Induced mappings on $C_n(X)/{C_n}_K(X)$
title_short Induced mappings on $C_n(X)/{C_n}_K(X)$
title_sort induced mappings on c n x c n k x
topic induced mapping
hyperspaces
continuum
containment hyperspaces
quotient space
url http://matstud.org.ua/ojs/index.php/matstud/article/view/101
work_keys_str_mv AT ecastanedaalvarado inducedmappingsoncnxcnkx
AT jganaya inducedmappingsoncnxcnkx
AT jamartinezcortez inducedmappingsoncnxcnkx