Integrated deep learning for cardiovascular risk assessment and diagnosis: An evolutionary mating algorithm-enhanced CNN-LSTM
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optim...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-12-01
|
Series: | MethodsX |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2215016125003115 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, emphasizing the urgent need for accurate and efficient predictive models. This study proposes a dual-output deep learning model based on a hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model, optimized using the Evolutionary Mating Algorithm (EMA). The model predicts both a continuous risk score and a binary diagnostic outcome, supporting both quantitative assessment and early clinical decision-making. EMA was applied for hyperparameter optimization, demonstrating improved convergence and generalization over conventional methods. Performance was benchmarked against CNN-LSTM models optimized using Particle Swarm Optimization (PSO) and Barnacle Mating Optimization (BMO). The EMA-based model achieved superior results, with a Mean Absolute Error (MAE) of 0.018, Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.024, and a coefficient of determination (R²) of 0.98 for risk prediction. For the diagnostic task, the model attained 70 % accuracy and 80 % precision. These findings validate EMA’s effectiveness in tuning dual-output deep learning models and highlight its potential in enhancing cardiovascular risk stratification and early diagnosis in clinical settings. • Dual-output CNN-LSTM model optimized using EMA. • Continuous risk scores and binary diagnostic classification predictions. • EMA outperformed PSO and BMO in predictive accuracy and model robustness. |
---|---|
ISSN: | 2215-0161 |